

www.paral laxsemiconductor .com
sa les@paral laxsemiconductor.com
support@paral laxsemiconductor.com
phone: 916-632-4664 • fax:916-624-8003

Real-time GPS Data Reception and Parsing v1.0 1 of 9

Application Note AN002

Real-time GPS Data Reception and Parsing
Abstract: Use the multicore Propeller P8X32A to receive, parse, and display GPS data in real
time. The gps_basic.spin object supports the most common NMEA 0183 sentences
($GPRMC & $GPGGA) at 4800 baud, with a configuration option for higher baud rates.

Introduction
The proliferation of consumer GPS products has provided engineers with a wide variety of
low-cost, high-quality GPS modules that are ideally suited for embedded location and
navigation applications. Embedded and hand-held GPS devices provide raw output through
a serial connection in the form of comma delimited, CrLf (carriage return/line feed)
terminated NMEA strings, typically at 4800 baud. Each string begins with a unique identifier
and contains one or more fields; for example:

$GPRMC,032606,A,3410.2358,N,11819.0865,W,0.0,207.2,180211,13.5,E,A*32

An embedded GPS application requires two support processes: 1) reception and buffering of
raw strings from the GPS receiver and, 2) parsing select elements from target GPS strings
as required by the application.

In many processors, a hardware UART and buffer handle the reception of raw GPS data. The
P8X32A silicon does not include a hardware UART. This is easily overcome by programming
a cog (individual 32-bit processor) to create a virtual UART. The advantage of this approach
is that the virtual UART may be configured as desired by the developer and is not restricted
in terms of I/O connections, features, buffer size, and performance like its fixed silicon
counterpart.

With raw NMEA strings received and buffered, the application must locate the target
string(s) for field extraction. The GPS object presented here (gps_basic.spin) devotes one
of the P8X32A cogs to NMEA string identification and removal from the serial buffer for field
parsing, allowing the main application object to focus on real-time activities.

Hardware Connections
The output of the GPS receiver will be TTL or RS-232 serial data at 4800 baud. With a TTL
device, the connections in Figure 1 are appropriate. The 3.3 kΩ series resistor limits the
current into the P8X32A I/O pin and allows the application to use a 3.3 V or 5.0 V GPS
receiver module.

Figure 1: TTL Connection

Parallax Semiconductor AN002

Many hand-held GPS units provide RS-232 output. A MAX3232A or similar device can invert
and level-shift the signal to the P8X32A. When the only level translation requirement of the
application is the GPS stream, the circuit in Figure 2 works well, with lower component cost
and PCB real estate use.

Figure 2: Low Cost RS-232 Interface

As suggested above, the advantage of a software UART is that it can be more flexible than a
hardware counterpart. The UART code used in this application supports configuration for
RS-232 data inversion. The connection illustrated in Figure 3 is appropriate when using the
UART in this mode.

Figure 3: Alternate RS-232 Interface for Software UART

Software Connection and Use
Instantiation of the GPS object is minimally based on the I/O pin used and the location
offset from Greenwich Mean Time.

 gps.start(GPS_RX, PST)

This form configures the UART for TTL level, true mode input at 4800 baud, with a 2500
millisecond timeout period for loss-of-GPS data detection. RS-232 input requires an
alternate method, with the baud rate specified as a negative value and the timeout period
specified in milliseconds.

 gps.startx(GPS_RX, PST, -4800, 2500)

The startx method is also suitable for newer GPS modules that provide the NMEA
sentences at higher baud rates.

 gps.startx(GPS_RX, PST, 9600, 1250)

 Real-time GPS Data Reception and Parsing v1.0 2 of 9

Parallax Semiconductor AN002

GPS Object Methods
The following public methods are available to the application using the gps_basic.spin
object.

start(pin, time_zone_offset) — The start method requires the I/O pin used for the RX

UART and the location offset from Greenwich Mean Time. This method configures
the UART for 4800 baud, true mode, with a loss-of-signal timeout of 2500
milliseconds.

startx(pin, time_zone_offset, [-]baud, timeout_ms) — The startx (explicit) method

requires the I/O pin used for the RX UART, the location offset from Greenwich Mean
Time, the baud rate (negative for inverted serial data), and the loss-of-signal
timeout value in milliseconds.

stop — The stop method terminates the software UART and GPS parsing cogs. This

method also clears the GPS buffers, causing any method call after the use of stop to
return zero or pointer to an empty z-string.

hasgps — Returns True when the UART is actively receiving serial data from the GPS

module. If the GPS stream is lost for a period that exceeds the timeout value this
method returns False.

s_gpsfix — Returns a pointer to a z-string that contains “Invalid”, “GPS”, or “DGPS”

indicating GPS fix quality. The pointer is suitable for use with the str method
provided by many serial objects.

n_gpsfix — Returns an integer, 0 to 2, indicating GPS fix quality. 0: No fix; 1: GPS fix; 2:

DGPS fix

s_satellites — Returns a pointer to a 1- or 2-digit z-string indicating the number of

satellites in view of the GPS receiver.

n_satellites — returns a decimal value indicating the number of satellites in view of the

GPS receiver.

s_utc_time — Returns a pointer to a 6-character z-string that contains the UTC time

(Greenwich Mean Time) in the form “HHMMSS”.

s_local_time — Returns a pointer to a 6-character z-string that contains the local time

based on the UTC offset specified in the start or startx method.

fs_utc_time — Returns a pointer to a formatted, 8-character z-string that contains the UTC

time (Greenwich Mean Time) in the form “HH:MM:SS”.

fs_local_time — Returns a pointer to a formatted, 8-character z-string that contains the

local time based on the UTC offset specified in the start or startx method.

s_utc_hrs — Returns a pointer to a 2-character z-string that contains the UTC time

(Greenwich Mean Time) hours in the form “HH”.

n_utc_hrs — Returns a decimal value, 0 to 23, that contains the UTC time (Greenwich

Mean Time) hours.

 Real-time GPS Data Reception and Parsing v1.0 3 of 9

Parallax Semiconductor AN002

s_local_hrs — Returns a pointer to a 2-character z-string that contains the local time
hours in the form “HH”.

n_local_hrs — Returns a decimal value, 0 to 23, that contains the local time hours.

s_mins — Returns a pointer to a 2-character z-string that contains the time field minutes in

the form “MM”.

n_mins — Returns a decimal value, 0 to 59, that contains the local time minutes.

s_secs — Returns a pointer to a 2-character z-string that contains the time field seconds in

the form “SS”.

n_secs — Returns a decimal value, 0 to 59, that contains the local time seconds.

s_date — Returns a pointer to a 6-character z-string that contains the UTC date in the form

“DDMMYY”.

fs_date — Returns a pointer to a formatted, 8-character z-string that contains the UTC

date in the form “DD/MM/YY”.

s_day — Returns a pointer to a 2-character z-string that contains the UTC day in the form

“DD” (“01” to “31”).

n_day — Returns a decimal value, 1 to 31, that contains the UTC day.

s_month — Returns a pointer to a 2-character z-string that contains the UTC month in the

form “MM” (“01” to “12”).

n_month — Returns a decimal value, 1 to 12, that contains the UTC month.

s_year — Returns a pointer to a 2-character z-string that contains the UTC year in the form

“YY” (“00” to “99”).

n_year — Returns a decimal value, 0 to 99, that contains the UTC year.

s_latitude — Returns a pointer to an 11-character z-string that contains the GPS latitude

in the form “DDMM.SSSS X” where “X” is “N” for north or “S” for south.

n_latsign — Returns a signed value, 1 for North, -1 for South, indicating the latitude

hemisphere.

s_latd — Returns a pointer to a 2-character z-string that contains the latitude degrees in

the form “DD” (“00” to “90”).

n_latd — Returns a decimal value, 0 to 90, that contains the latitude degrees.

s_latm — Returns a pointer to a 2-character z-string that contains the latitude minutes in

the form “MM” (“00” to “59”).

n_latm — Returns a decimal value, 0 to 59, that contains the latitude minutes.

 Real-time GPS Data Reception and Parsing v1.0 4 of 9

Parallax Semiconductor AN002

n_lats — Returns a decimal value, 0 to 59, that contains the latitude seconds, calculated
from the fractional seconds provided in the GPS latitude field.

s_longitude — Returns a pointer to a 12-character z-string that contains the GPS longitude

in the form “DDDMM.SSSS X” where “X” is “E” for east or “W” for west.

n_lonsign — Returns a signed value, 1 for East, -1 for West, indicating the longitude

direction from the prime meridian.

s_lond — Returns a pointer to a 3-character z-string that contains the longitude degrees in

the form “DDD” (“000” to “180”).

n_lond — Returns a decimal value, 0 to 180, that contains the longitude degrees.

s_lonm — Returns a pointer to a 2-character z-string that contains the longitude minutes in

the form “MM” (“00” to “59”).

n_lonm — Returns a decimal value, 0 to 59, that contains the longitude minutes.

n_lons — Returns a decimal value, 0 to 59, that contains the latitude seconds, calculated

from the fractional seconds provided in the GPS longitude field.

s_spdk — Returns a pointer to a variable-length z-string that contains the GPS speed in

knots.

n_spdk — Returns a decimal value indicating GPS speed in 0.1 knots (e.g., 1000 = 100.0

knots).

n_spdm — Returns a decimal value indicating GPS speed in 0.1 mph (e.g., 650 = 65.0 mph).

s_bearing — Returns a pointer to a variable-length z-string that contains the GPS bearing,

“0.0” to “359.9”.

n_bearing — Returns a decimal value indicating GPS bearing in 0.1 degrees.

s_altm — Returns a pointer to a variable-length z-string that contains the GPS altitude in

meters, “0.0” to “9999.9”.

n_altm — Returns a decimal value indicating GPS altitude in 0.1 meters.

n_altf — Returns a decimal value indicating GPS altitude in 0.1 feet.

 Real-time GPS Data Reception and Parsing v1.0 5 of 9

Parallax Semiconductor AN002

Customizing the GPS Object
As presented, the gps_basic.spin object detects and parses the $GPRMC and $GPGGA
strings from the serial stream. To extract a field contained in another string the following
steps are required.

 Add a working buffer for the target string (VAR section)
 Add detection/buffering of the target string to the parse_gps method
 Add appropriate methods to extract and return desired field data

Example

The GPS altitude is contained in field 9 of the $GPGGA sentence. A working buffer in the
VAR section holds the complete string.

var
 byte ggawork[WORK_SIZE]

The parse_gps method, which runs independently in a separate cog, detects and moves
target NMEA strings to the appropriate working buffer. The method begins by clearing a
temporary buffer. After detection of the “$” which indicates the start of a string header,
subsequent characters are moved to the temporary buffer until the detection of a carriage
return (13) which indicates the end of the string.

The first field of the newly captured string is compared with known targets, and if a match is
found the temporary buffer is copied to the working buffer for the target string. (See project
code for annotated source.)

pri parse_gps | ok, c, len

 repeat
 ok := true

 bytefill(@gpswork, 0, WORK_SIZE)
 repeat
 c := rxtime(rxtimeout)
 if (c < 0)
 ok := false
 quit
 until (c == "$")

 if ok
 len := 0
 repeat
 c := rxtime(rxtimeout)
 if (c < 0)
 ok := false
 quit
 if (c <> 13)
 gpswork[len++] := c
 else
 quit

 if ok
 if (strncmp(@RMC_HDR, @gpswork, 6) == 0)
 bytemove(@rmcwork, @gpswork, len)
 elseif (strncmp(@GGA_HDR, @gpswork, 6) == 0)
 bytemove(@ggawork, @gpswork, len)

 Real-time GPS Data Reception and Parsing v1.0 6 of 9

Parallax Semiconductor AN002

The s_altm method returns a pointer to a z-string that holds the GPS altitude in 0.1
meters.

pub s_altm

 bytefill(@gpsrslt, 0, RSLT_SIZE)
 gps_fcopy(@gpsrslt, @ggawork, 9)

 return @gpsrslt

Most GPS field methods begin by clearing the result string buffer with zeroes. This allows
subsequent code to move characters to the field without having to explicitly add termination
(0). The gps_fcopy method moves the target field (9) from the NMEA string working
register (ggawork) to the result string (gpsrslt). Finally, the s_altm method returns a
pointer to that string for use by the application.

For GPS methods that return a numeric value the str2dec method does the conversion. In
the example below, the n_satellites method calls the s_satellites method to extract
field 7 from the $GPGGA string, then uses str2dec to return the numeric value of this string
to the application. If there is no GPS data in the working buffer the str2dec method returns
zero.

pub s_satellites

 bytefill(@gpsrslt, 0, RSLT_SIZE)

 if (strncmp(@GGA_HDR, @ggawork, 6) == 0)
 gps_fcopy(@gpsrslt, @ggawork, 7)

 return @gpsrslt

pub n_satellites

 s_satellites

 return str2dec(@gpsrslt, 2)

Optimization

As illustrated above, most numeric methods call an associated string method to extract the
required field from a NMEA string. As all methods are intended to be atomic, each will
extract the required field, on occasion leading to small inefficiencies.

For example, the following code supplies the application with local time fields in numeric
form:

 hr := gps.n_local_hrs
 mn := gps.n_mins
 sc := gps.n_secs

Each of the method calls extract the time field from the $GPRMC string. The GPS object
exposes the address of the field result string through the rslt_pntr method. By using this
as the source string for the str2dec method, numeric values can be derived without
redundant retrieval of the GPS field.

 Real-time GPS Data Reception and Parsing v1.0 7 of 9

Parallax Semiconductor AN002

 gps.s_local_time
 hr := gps.str2dec(gps.rslt_pntr+0, 2)
 mn := gps.str2dec(gps.rslt_pntr+2, 2)
 sc := gps.str2dec(gps.rslt_pntr+4, 2)

As illustrated above the s_local_time method moves the unformatted local time field to
the result string. With the time string captured the str2dec method is used to extract field
values, using the offset within that string (0 for hours, 2 for minutes, 4 for seconds) and the
number of characters to convert (2).

Note: The result string is intended for immediate use. Subsequent calls to any field-based
methods will modify this string. If a copy is required the s_copy method is available to
move the contents of the result string to another array.

 gps.s_copy(@mylocaltime)

The destination parameter for s_copy is a pointer to an array of at least 20 bytes.

Example Application

The attached application (gps_basic_demo.spin) displays GPS fix quality, the number of
satellites in view, UTC time, and local time and location information using the Parallax Serial
Terminal (Figure 4).

Figure 4: Parallax Serial Terminal displays output of gps_basic_demo.spin

 Real-time GPS Data Reception and Parsing v1.0 8 of 9

Parallax Semiconductor AN002

Real-time GPS Data Reception and Parsing v1.0 9 of 9

Resources
A zip file containing the following items is available from this application note’s page at:
www.parallaxsemiconductor.com/AN002

gps_basic.spin
gps_basic_demo.spin
FullDuplexSerial.spin

References
1. NMEA sentence definitions: http://aprs.gids.nl/nmea

Revision History
Version 1.0: original document.

Parallax, Inc., dba Parallax Semiconductor, makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Parallax, Inc., dba Parallax Semiconductor, assume any liability arising out of the application or
use of any product, and specifically disclaims any and all liability, including without limitation consequential or incidental damages
even if Parallax, Inc., dba Parallax Semiconductor, has been advised of the possibility of such damages. Reproduction of this
document in whole or in part is prohibited without the prior written consent of Parallax, Inc., dba Parallax Semiconductor.

Copyright © 2011 Parallax, Inc. dba Parallax Semiconductor. All rights are reserved.
Propeller and Parallax Semiconductor are trademarks of Parallax, Inc.

http://www.parallaxsemiconductor.com/AN002
http://aprs.gids.nl/nmea

	Real-time GPS Data Reception and Parsing
	Introduction
	Hardware Connections
	Software Connection and Use
	GPS Object Methods
	Customizing the GPS Object
	Resources
	References
	Revision History

