

www.paral laxsemiconductor .com
sa les@paral laxsemiconductor.com
support@paral laxsemiconductor.com
phone: 916 ‐632 ‐4664 • fax:916 ‐624 ‐8003

Simple Multicore Template for the Propeller P8X32A v1.0 1 of 5

Application Note AN011

Simple Multicore Template for the Propeller P8X32A
Abstract: Use the simple_multicore_template.spin object as a starting framework for
developing multicore Propeller applications that also comply with Parallax Semiconductor’s
Gold Object Standard. Several demonstration programs illustrate different aspects of
parallel processing on the Propeller P8X32A microcontroller.

Introduction
Sometimes knowing where to begin programming when getting started with a new platform
can be daunting. This template gives the reader an initial framework to take some of the
“guess work” out of getting started with the Propeller chip and Spin language—just start
filling in your code. The document is written from the perspective of the template being the
top object file. However, depending on how code is filled in inside the template, a Parallax
Gold Standard[1] compliant object can easily be developed from it.

The Template: simple_multicore_template.spin
{{
Object file: simple_multicore_template.spin
Version: 0.1
Date:
Author: [your name here]
Company:
Email:

Description:
This is a template for a simple multicore Propeller application. Fill it
in to define the operation of your multicore application.

===
 Connection Diagram
===

N/A

Components:
N/A

===
}}
CON

 'Set up the clock mode
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000
 '5 MHz clock * 16x PLL = 80 MHz system clock speed

VAR

 'Globally accessible variables
 long cogStack[100]
 long routine1_cog, routine2_cog

Parallax Semiconductor AN011

OBJ
 'Any object declarations go here

PUB Main
{{
 First public method in the top .spin file starts execution, runs in cog 0

 parameters: none
 return: none

 example usage: N/A - executes on startup

 Starts two cogs running in parallel with separate routines, then
 repeats forever.
}}

 'your code here

 'Start parallel routines
 routine1_cog := cognew(Parallel_Routine_1(6, 365, -1), @cogStack[0]) + 1
 routine2_cog := cognew(Parallel_Routine_2, @cogStack[50]) + 1

 'main loop - repeats forever
 repeat

PUB Parallel_Routine_1(param_var1, param_var2, param_var_etc) | local_var1, local_var2, local_var_etc
{{
 Does nothing yet. Add Spin statements to define the operation of this
 public method. Meant to run independently in its own cog.

 parameters: param_var1 = first parameter passed into Parallel_Routine_1
 param_var2 = second parameter passed into Parallel_Routine_1
 param_var_etc = third parameter passed into Parallel_Routine_1

 return: none

 example usage: cognew(Parallel_Routine_1(42, 89, 314), @cogStack[0]) + 1

 expected outcome of example usage call: Does nothing yet.
}}

 'Your code here

PUB Parallel_Routine_2 | local_var1, local_var2, local_var_etc
{{
 Does nothing yet. Add Spin statements to define the operation of this
 public method. Meant to run independently in its own cog.

 parameters: none
 return: none

 example usage: cognew(Parallel_Routine_2, @cogStack[50]) + 1

 expected outcome of example usage call: Does nothing yet.
}}

 'Your code here

PRI Private_Method_1 : return_result | local_var1, local_var2, local_var_etc
{{
 Does nothing yet. Add Spin statements to define the operation of this
 private method.

 parameters: none
 return: 0 - alias is "return_result"

 example usage: Private_Method_1

 expected outcome of example usage call: Does nothing yet.

Simple Multicore Template for the Propeller P8X32A v1.0 2 of 5

Parallax Semiconductor AN011

}}

 'Your code here

PUB Public_Method_1 : return_result | local_var1, local_var2, local_var_etc
{{
 Does nothing yet. Add Spin statements to define the operation of this
 public method.

 parameters: none
 return: 0 - alias is "return_result"

 example usage: Public_Method_1

 expected outcome of example usage call: Does nothing yet.
}}

 'Your code here

The Constant Block

Typically, the optional CON constant declaration block appears as the first block within an
object, but it can be placed anywhere. It can contain compiler directives and constant
declarations for use within the object. Constant assignments use a single “=” operator
instead of the “:=” variable assignment operator.

Global Variables

Define global variables in the VAR section of the object. These variables are globally
accessible to all Spin methods in the object, including methods that might be executing in
other cogs. Be aware that another cog may change global variable’s value if multiple cogs
share the same memory location, resulting in a possible memory collision. Even though the
Propeller’s hub guarantees a cog mutually exclusive access to a variable residing in main
memory, nested operations (like post increment) are not always apparent and take multiple
accesses to complete.

Spin provides a set of lock commands to prevent memory collisions; see the Propeller
Manual for more information [2].

Stack Space Variables

When launching a Spin method into a new cog with the COGNEW or COGINIT commands, the
Spin interpreter needs dedicated RAM space allocated for a call stack. For relatively small
Spin routines running independently in a cog, 50 longs of allocated space is plenty. Since
the template launches two additional cogs, an array of 100 longs has been reserved. For
more information about stack space requirements, see AN019: Stack Space [3].

Object Declarations

Included object declarations go in the OBJ section. The template does not pre-include any
objects, but the other demonstration programs in the .zip file declare the Parallax Serial
Terminal.spin object[4] for serial communication with a serial terminal. Note that any
method within the object can make use of an included child object’s public (PUB) methods,
even if the calling methods are executing in a different cog. Be aware that possible multi-
threaded hazards can exist when making calls to a child object’s methods from multiple

Simple Multicore Template for the Propeller P8X32A v1.0 3 of 5

Parallax Semiconductor AN011

cogs. Executing the simple_multicore_template_demo1.spin application on the Propeller
demonstrates how multiple calls to the Parallax Serial Terminal from parallel routines can
cause unexpected results.

First Public Method in the Top Object File
The first public Spin method in the top object file serves as the entry point for execution on
the Propeller. The Spin Interpreter, which always starts in cog 0, executes the Spin
instructions. Since these Spin instructions are the first things executed, at least one public
method must exist in every object.

Subsequent Public Methods and Private Methods

All methods within an object can be launched into a cog or called from any other method in
that object. Private (PRI) methods can only be called from within the object that contains
them. Declaring a method private prevents inappropriate calls from outside the object,
where such a call could negatively affect the integrity of the object itself.

Method Parameters

The Parallel_Routine_1 method in the template demonstrates a method that requires three
parameters be passed to it. Parameter values passed into a method are locally scoped and
can be referenced within the method by the parameter’s symbol defined symbol name.
Method parameters are typed as a LONG by default and are capable of holding signed 32-bit
values.

Local Variables
A local variable is valid only within the method that declares it. Any data stored in a local
variable is valid only while that method is being executed. Declare local variables on a
method’s header line by inserting “| LocalVar, …” where LocalVar is the desired name of
each local variable declared. In the code template above, each method has a few local
variables defined, except for the Main method.

Return Values and the Result Alias
All methods return a value upon completion, even if an explicit return command is not
issued. The value returned is stored in a special local RESULT variable within each method.
By default, a method returns with zero unless the RESULT variable is changed or a RETURN
Value command is issued. To aid in program readability, the RESULT variable can be aliased
to a variable name of your choosing. This is done on the method’s header line by inserting
“:RValue” where RValue is the desired symbol, after the method’s parameters but before
local variable definitions. Public_Method_1’s result value in the template is aliased to
return_result, which can have assignments made to it just as any other local variable.
Remember, Spin commands are not methods; some commands like LONGMOVE do not return
a value and cannot be assigned to a variable.

Simple Multicore Template for the Propeller P8X32A v1.0 4 of 5

Parallax Semiconductor AN011

Simple Multicore Template for the Propeller P8X32A v1.0 5 of 5

Symbol Name Scope
Symbols defined in an object have a scope limited to that object, but extends to the object’s
methods running in other cogs. Access to some symbols (public methods and constants) in
included objects is only possible through the use of the object.method or object#constant
syntax. See the Propeller Manual v1.1 for more information.[2]

Resources
The following files are available for download from the zip file archive at this application
note’s web page: www.parallaxsemiconductor.com/an011.

simple_multicore_template.spin
simple_multicore_demo1.spin
simple_multicore_demo2.spin

References
1. Gold Standard objects: www.parallaxsemiconductor.com/goldstandard
2. Propeller Manual version 1.1: www.parallaxsemiconductor.com/docs
3. AN019: Stack Space: www.parallaxsemiconductor.com/an019
4. Parallax Serial Terminal.spin is a Propeller Tool library object; download the Propeller

Tool from www.parallaxsemiconductor.com/software.

Revision History
Version 1.0: Original document

Parallax, Inc., dba Parallax Semiconductor, makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Parallax, Inc., dba Parallax Semiconductor, assume any liability arising out of the application or
use of any product, and specifically disclaims any and all liability, including without limitation consequential or incidental damages
even if Parallax, Inc., dba Parallax Semiconductor, has been advised of the possibility of such damages. Reproduction of this
document in whole or in part is prohibited without the prior written consent of Parallax, Inc., dba Parallax Semiconductor.

Copyright © 2011 Parallax, Inc. dba Parallax Semiconductor. All rights are reserved.
Propeller and Parallax Semiconductor are trademarks of Parallax, Inc.

	Simple Multicore Template for the Propeller P8X32A
	Introduction
	The Constant Block
	Global Variables
	Object Declarations
	First Public Method in the Top Object File
	Local Variables
	Return Values and the Result Alias
	Symbol Name Scope
	Resources
	References
	Revision History

