\/ www.parallaxsemiconductor.com
/\ sales@parallaxsemiconductor.com

support@parallaxsemiconductor.com

SEMICONDUCTOR phone: 916-632-4664 » fax:916-624-8003

Application Note AN013

GUI & Graphics Series — Menus and Messaging with
the Propeller Window Manager Framework

This GUI & Graphics Series tutorial illustrates how to create complex, data-driven GUI
applications based on the Propeller Window Manager Framework (WMF). The demos
provided illustrate the use of menus, buttons, and event handler development to implement
entire GUI applications that control real world devices.

This tutorial builds upon the foundations built in the GUI & Graphics Series AN004: Getting
Started with VGA and Terminal Outputi*!. Also in this series, ANO05: Simple VGA Menus'?
discusses this material in a more introductory manner.

Introduction

GUI programming is a large subject that by definition is a “design” process. Unlike fixed
algorithms that perform calculations, move servos, or monitor sensors, GUI applications
interface with users—humans—and are dynamic, artistic, and creative. That said, GUIs are
so complex that massive libraries are developed to help programmers create these very
demanding applications in a uniform way.

Event-driven graphical operating systems such as Windows®, OS X", Android"" and others
have tens to hundreds of thousands of lines of GUI code in them. This code draws GUI
elements, manages user input, support mice, and or touch screen gestures, supports
complex messaging and real-time structures, so user interfaces can run in parallel with
application code. These GUI APIs can have hundreds of functions themselves, so learning
just to use a GUI API is a steep curve.

Therefore, developing GUI applications on microcontrollers, with limited memory and
performance compared to microprocessors, is challenging to say the least. There are lots of
planning and design tradeoffs to consider before starting any programming. For example,
will the GUI be event driven, hard coded? What data formats will controls be represented
with?

Additionally, once the foundation for the GUI controls is written then there is still the matter
of “designing” the look and feel of the GUI application itself. This skill can only be obtained
from experience, reviewing other GUIs, understanding the target users, trial and error, and
common sense.

Taking that into consideration, this application note implements a GUI with an event-driven
model much like Windows®, OS X", and Android”. This is very complex to develop, but
gives a huge return on investment from the application programmer’s point of view since his
(your) workload is reduced markedly. Additionally, as the Propeller Window Manager
framework grows, new controls and functionality will fit into this model very easily since the
definitions of each GUI control are data driven and not programmatic.

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 10of49

Parallax Semiconductor ANO13

This application note relies on the pre-selected VGA driver VGA_HiRes_Text_010.spin.
Using this driver saves a lot of time and coding. Again, refer to the application note
AN004!! for discussion of this driver.

Architectural Concepts for the Propeller Window Manager Framework

The Propeller Window Manager framework, referred to as the WMF, is a single Spin object
file: WMF_Framework_010.spin. The file contains a large API that consists of console
terminal text methods, direct rendering methods, drawing methods, keyboard and mouse
interfaces, along with a set of controls (menus and buttons). The idea of the framework is
to completely insulate the application programmer from the details of GUI programming,
and let the user application focus on the design of the GUI and the processing of events as
they are generated from the user navigating the GUI itself. The following paragraphs will
briefly discuss the architecture of the WMF itself as well as thresh out some conceptual
fundamentals relating to the various elements of the system.

WMF isn’t a bitmapped GUI, but rather a text-based GUI which can look just as good as long
as there are characters available to draw lines, boxes, borders, shadows and so forth.
Furthermore, WMF sets the VGA resolution to 800x600 (this can be changed in the VGA
driver VGA_HiRes_Text_010.spin to a higher or lower setting). This resolution is a good
middle ground that works on all VGA monitors and doesn’t use too much memory. In this
text mode, each character is 8x12 pixels, resulting in a screen that is 100x50 characters.

Figure 1: Details of a 800x600 Pixel VGA Screen with 8x12 Character Font

ColorPtr - WORD array representing foreground/background color for each screen row.
ScreenPtr - Points to BYTE buffer representing ASCII screen characters.

Pixel Address ¥
(0.0) i

Y

WORD[0]| Row 0 8x12 Pixel Font.

Character (0,0)

WORD[1] | Row 1

2 Colors per screen row encoded in WORD]] array pointed
WORDLZ] | Row2 to by ColorPtr.

Character (99,49)
WORDJ 49 | | Row 49
(799,599)

Pixel Address
100x50 Characters
800x600 pixel VGA mode.

Figure 1 shows the layout of the VGA text screen. Luckily, the WMF insulates the user
application from having to deal with the VGA screen mechanics. However, if you're
interested please review application note AN004!!,

Figure 2: Software Object Model Relationship

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 2 of 49

Parallax Semiconductor ANO13

User_App.spin WMF_Framework_010.Spin wouse_011.spin
Top level application code, —_—> ———>| Standard 2-wire
init?:ltizhatioclj}. maLr} event loop, PS/2 mouse driver.
event handlers, etc. -—

Keyboard_011.spin
A)
: —> | BB oard wiver.

VGA_HiRes_Text_010.spin
2-COG VGA text driver with
Messages generated by framework... ! L 640x480, 800x600, 1024x768

resolutions, and 2 colors per
character row.

. Messages handled by top level application... : l

' '
Ml Message | Message | Message W Message | Message <-!
[code |id] [code |id] [code |id] [cede |id] [code |id]

Message Queue

GUI Application

Figure 2 identifies the software objects needed for a complete application. The top-level
application is up to you; in this case User_App.spin is the place holder. The user application
must include the WMF framework object WMF_Framework_010.spin, which in turn includes
the VGA driver VGA_HiRes_Text_010.spin along with the mouse and keyboard drivers
Mouse_011.spin and Keyboard_011.spin respectively.

Thus, aside from the VGA driver, mouse, and keyboard, everything is encapsulated by the
WMF_Framework_010.spin object itself—no need to hunt around to multiple modules for
API methods, headers, and data structures. As the framework grows it might be prudent to
break it up into more objects, but for now a single object is easier to work with.

Understanding Controls and Events

Now, let’s discuss how things work at a high level and drill down to the details. The top-
level user application instantiates the WMF object, which in turn instantiates all the other
objects, then the system starts running. It's the user application’s responsibility to do these
two things:

e Create the initial GUI “controls” with local data statements and attach them to the
GUI

e Process messages from the WMF’s event queue and take the appropriate actions by
calling handler methods for various messages

When discussing GUIs and graphical operating systems, the term “control” simply means
something on the GUI that the user interacts with. Examples of controls are menus,
buttons, windows, text edit boxes, dialog boxes, and so forth. The WMF currently only
supports two controls—menus and buttons—but that’s enough to create quite a few GUI
applications. Of course, static GUI elements like labels, boxes, frames, and so on are also
supported with simple API calls to draw them, but those elements are not interactive.

Thus, the controls in a GUI application provide the means through which the user interfaces
with the application. These controls have to be created by the user application, and then
the windowing system (WMF in this case) renders the controls and processes them as the
user interacts with them (via clicking, dragging, hovering, etc.) As the user interacts with

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 3 0of 49

Parallax Semiconductor ANO13

the controls, these interactions are referred to as “events,” hence the term “event-driven”
model or programming. The user application sits in a loop and waits for events to occur,
which is another way of saying the user application’s job is to wait for events and then
“handle” them. This handling is where the rubber meets the concrete.

The “event handlers” in the user application actually do something, but have nothing to do
with the GUI code. At the end of the day all the GUI code and WMF do is draw images on
the screen, allow the user to interact with these images, and then finally send messages to
the user application that indicate the type of event(s) that have occurred. The user
application can then take action finally, via the event handlers. Examples might be to turn
on a motor, play a sound, switch on a relay, and so forth. The irony is that the final
application code might be as simple as turning on/off a set of 8 LEDs. This code might look
like:

OUTA[port_ bit] :=1
However, the GUI code that allows the user to interact with graphics on the screen by

clicking a button or menu to turn on/off the LED might be hundreds or even thousands of
lines of code!

Figure 3: Data Flow Model of WMF’s Event-driven System

Propeller Window Manager Framework
WMF_Framework_010.spin

i<
D > Rendering API

>

>

User Application

Initialize Vars | L - Control API

Draw Static Elements Sttt SREEEEER R LR ' ProcessGUI
- o ProcessMenus...
|Attach Controls ooos e L L

| Draw Controls ProcessButtons...

Generate Messages...

ProcessGUI | SRRl ' Message Queue ¥

' CetMeseans 7 . Message | Message | Message B Message | Message
. GEtMessage [code | ig] [eode | ig] [code | ig] [code | ig| [code |id]

[Message Dispatcher e L > | Event Handler |

- | Event Handler |

-~ » | Event Handler |

Event handlers make changes to the state of the application
and/or make changes to real-world hardware.

All menu and button controls
defined by data as sequence
of bytes.

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 4 of 49

Parallax Semiconductor ANO13

Figure 3 illustrates a more detailed data flow model of what we have been discussing. The
user application creates a number of controls by declaring data structures for menus,
buttons, and so forth. This is where the “data driven” part of the model comes from.
Rather than using method calls to create controls, the user application uses data statements
(text, strings, XML, etc.) to define controls. In the case of WMF, simple DAT statements are
used. As an example, the listing below illustrates the declaration for one of the menus
supported by WMF, the hotlist:

DAT

motor_hotlist LONG ' start at LONG boundary
BYTE WMF#MENU_STYLE_TYPE_HOTLIST ' type of menubar, classic, hotbar, etc.
BYTE WMF#ATTR_DRAW_NORMAL | WMF#ATTR_DRAW BORDER ' generic rendering attributes, context

' sensitive

BYTE WMF#ASCII_VLINE ' space filler character
BYTE 2,15,26 " x,y position of menu and width
BYTE 7 " how many submenus on the main menubar?
BYTE "Motor Speed Control Menu”, @ " optional menu title string

" list of menu items for the menubar, each consists of the style flags,
" the string, the id, and a null terminator at end
BYTE WMF#MENU_STYLE_STATE_ACTIVE, 3@, "0% Duty (0Off)",
BYTE WMF#MENU_STYLE STATE_ACTIVE, 31, "5@% Duty'’,
BYTE WMF#MENU_STYLE_STATE_ACTIVE, 32, "60% Duty’,
BYTE WMF#MENU_STYLE_STATE_ACTIVE, 33, "7@% Duty’,

" hotlist item
" hotlist item
" hotlist item
" hotlist item
" hotlist item
" hotlist item
" hotlist item

BYTE WMF#MENU_STYLE_STATE_ACTIVE, 34, "80% Duty’
BYTE WMF#MENU_STYLE_STATE_ACTIVE, 35, ""90% Duty"
BYTE WMF#MENU_STYLE_STATE_ACTIVE, 36, "100% Duty (Max)",

[(SESESESESESES]
DO~ W -

These data structures are passed to the WMF which “attaches” the controls to the screen
surface and begins drawing them and processing events. The WMF processes events simply
by tracking the mouse state and determining if the mouse is over a control (by using
collision detection algorithms) and if the user is clicking on the control (by using a state
machine that tracks the mouse activity). As the user interacts with the controls, events are
generated that are translated into "messages” that in turn get inserted into an event queue
(a simple array of longs as shown in the listing below).

long gMsgQueue[NUM_MESSAGES] " holds messages

long gMsgQueueHead, gMsgQueueTail ' head and tail index

long gMsgQueueNum number of messages in queue,

helps to differentiate empty and full cases

This message queue is the common link between the user application and WMF framework.
The WMF framework is the producer of messages and the user application is the consumer.

The user application’s entire view of the GUI is seen only through the messages it receives
in the event queue. These events are the “eyes” and “ears” of the user’s application. If a
message arrives indicating a button has been pressed, the user application parses the
message to determine which button was pressed based on the control ID, and then calls the
proper message/event handler.

This concept is very important, so let’s reiterate:
The user application interacts with the GUI by means of interrogating and

processing events/messages in the message queue generated by the GUI
code and then takes actions in the real world.

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 5 of 49

Parallax Semiconductor ANO13

This process is repeated over and over every cycle. Thus, all the user application does is sit
in a loop, call the WMF’s main GUI processing method ProcessGui each cycle, and then
check for messages.

The glue that connects the controls to the GUI are the identifiers (IDs) for each control
element. Each control the user application initially creates is assigned an identification
number. With this ID, the user code can figure out what control received the interaction,
and the WMF tells the user what kind of interaction. With those two pieces of information,
the user application can do what it needs to do. Considering all the steps, we have the
updated model:

The user application creates a number of controls (details on this in a moment).

The WMF attaches the controls to the GUI (VGA screen).

The user application sits in a tight loop making a call to the WMF’s main entry point
ProcessGui, this gives the GUI thread a cycle to operate, then it returns.

e The WMF processes mouse (and keyboard) actions to determine if the mouse is
interacting with a control, and if so inserts messages into the message queue (which
can overflow if the user application doesn’t process messages often enough).

e The user application checks the message queue each cycle for new messages and if

a message of interest is in the queue (a button was clicked, menu item selected,
etc.) takes the appropriate action.

Figure 4: Multi-control Demo illustrates Various Types of Controls and Static GUI Elements

Parallax Window Manager Framework | Multi Control Demo | <ec> Parallax 2@

ontrol Panel

LCD Display

:} 2¢aBc> | [3<DEF>

) o) (G0

» Message
» Message
» Message
s Message
s Message
» Hessage
» Message

ot e s e
(-1-1-1-1-1-1-]

Creating Controls

All controls in WMF are data driven rather than programmatically generated. This provides
a very natural way to develop a control object with human-readable strings and engineer a
GUI element iteratively. In contrast, making method calls to generate controls would be a
long and tedious process. Data modeling also makes them much easier to modify since a
single pointer can pass a control object to the Propeller Window Manager. Programmers

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 6 of 49

Parallax Semiconductor ANO13

familiar with XML (eXtensible Markup Language) or with using external resource files will
feel at home with this methodology.

There are two classes of GUI elements that the WMF supports: active and static. Static GUI
elements are nothing more than window dressing without functionality. The user
application simply makes API calls to WMF to draw them on the VGA screen (or intrepid
coders can write directly to the VGA buffer).

Referring to Figure 4, static GUI elements are things like the text at the top that displays
the demo’s name. The LCD display for example uses a static “frame.” Frames can be used
to contain controls, draw nice boxes, etc. Both of these GUI elements were drawn at the
start of the demo itself with these calls (:

WMF .PrintString (string ('Parallax Window Manager Framework | Multi Control Demo | (c) «
Parallax 2011"), 16, 1, 0)

" draw frame for fake LCD
WMF .DrawFrame (PX-2, PY-10, 20, 5, string("LCD Display’’), @, gVideoBufferPtr, VGACOLS)

Typically, the user application will draw a number of static GUI elements to indicate to the
user various areas of interest and display information in a clean manner. Additionally, as
the user interacts with the GUI itself, it might update these static elements by erasing them
and re-drawing them. For example, an application might need to dynamically display
readouts for temperature, pressure, voltage, current, and/or whatever the particular
application is controlling and/or monitoring. All these would be drawn and re-drawn with
static GUI elements.

The complete listing of the following API methods is in WMF_Framework_010.spin. These
two methods, PrintString and DrawFrame, are going to do 90% of the static rendering for
you. Here are their complete prototypes:

PUB PrintString(pStrPtr, pCol, pRow, pInvFlag)

{{
DESCRIPTION: This method draws a string directly to the frame buffer avoiding the
terminal system.

PARMS: pStrPtr - Pointer to string to print, null terminated.
pCol - Column (x) position to print (0,0) upper left.
pRow - Row(y) position to print.

pInvFlag - Renders character with inverse video colors; i.e background swapped
with foreground color.

RETURNS: Nothing.
1}

PrintString draws directly to the VGA buffer, so be careful not to print out of bounds and
step on memory. You can of course print to the VGA screen in “terminal” mode as well,
which is much more restrictive. The powerful DrawFrame method can be used to create
frames, containers, and very elegant displays; its prototype is shown below:

PUB DrawFrame(pCol, pRow, pWidth, pHeight, pTitlePtr, pAttr, pVgaPtr, pVgaWidth)

{{

DESCRIPTION: This method draws a rectangular 'frame' at pCol, pRow directly to the

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 7 of 49

Parallax Semiconductor ANO13

graphics buffer with size pWidth x pHeight. Also, if pTitlePtr is not null then a
title is drawn above the frame in a smaller frame, so it looks nice and clean.

PARMS:

pCol - The column to draw the frame at.

pRow - The row to draw the frame at.

pHidth - The overall width of frame.

pHeight - The height of the frame.

plTitlePtr - ASCIIZ String to print as title or null for no title.

pAttr - Rendering attributes such as shadow, etc. see CON section at top of
program for all ATTR_* flags.
Currently only ATTR_DRAW_SHADOW is implemented.

pVgaPtr - Pointer to VGA character graphics buffer.

pVgaWidth - Width of VGA screen in bytes, same as number of columns in screen; 40,

64, 80, 100, etc.

RETURNS: Nothing.
1)

Active GUI elements that the user interacts with, such as menus and buttons, must be
declared formally and attached to the GUI itself. It's a two-step process: first declare the
control, and then secondly attach it to the GUI so the WMF can start rendering and
processing it. Let's take a look at the data declaration formats of the various controls.
WMF supports both menus and buttons. Let’s begin with the simpler of the two: buttons.

Figure 5: Features of a Button

(x,y) Position

/— Border (optional)

Text Labell

\—Shadow (optional)

Width -

Creating Button Controls

Buttons are the simplest GUI elements supported in the WMF. They are individual controls
not attached to anything else (like menus, which are aggregate controls) and exist
separately from other controls. Referring to Figure 5, a button consists of the following 6
fields:

Field 1: The type of button (currently there is only a single type).
Field 2: The rendering attributes of the button such as borders, shadows, etc.

Field 3: The (X, y) location of the button where (0,0) is the upper left hand character
position of the screen.

Field 4: The state of the button. Usually all buttons are active, so this is a default field.

Field 5: A numeric identifier for the button that the WMF uses to refer to the button;
you supply this.

Field 6: The text label for the button in ASCII format with NULL terminator.

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 8 of 49

Parallax Semiconductor ANO13

The binary format of the single button type is shown below:

DAT
button_name BYTE

BYTE BUTTON_STYLE TYPE STANDARD ' type of button, "'STANDARD" supported currently.
BYTE {rendering attribute flags} ' generic rendering attributes, shadows, borders...
BYTE x, y " %,y position of button (width based on string).

" flags, id, and string for the button itself followed by NULL terminator
BYTE {button style flags}, {button id}, "button title string’,0

The first byte in any button declaration is the type of button. Currently only one type is
supported: BUTTON_STYLE_TYPE_STANDARD (find this constant and others in the CON section
of WMF_Framework_010.spin).

The next byte controls the rendering attributes. This is a bit-encoded, context-sensitive
field that “hints” to WMF what you would like visually. WMF then tries to do its best to give
you what you want. The rendering attributes are shown below:

" general graphical rendering attributes for controls and windous
ATTR_DRAW_SHADOW $01

ATTR_DRAW_SOLID $02 ' (not implemented)

ATTR_DRAW_DASH $04 ' (not implemented)

ATTR_DRAW_BORDER $08
ATTR_DRAW_INVERSE $10
ATTR_DRAW_NORMAL $00

For a normal button with no borders or any ornamentation use ATTR_DRAW_NORMAL. To add
a border use ATTR_DRAW_BORDER. To add a shadow to a border simply logically OR them
together like this:

ATTR_DRAW_BORDER | ATTR_DRAW_SHADOW

The next pair of bytes is the (x,y) position of the control itself. Normally, a byte wouldn‘t be
enough bits to represent a bitmapped control’s position, but since this is a text-based GUI
the screen is much smaller (100x50 characters at 800x600 pixels is the default).

The next byte in the declaration is called the button style flags. This is a bit-encoded byte
that indicates the style and state of the control. The possible bit values are shown below:

BUTTON_STYLE_STATE_ACTIVE
BUTTON_STYLE_STATE_GRAYED
BUTTON_STYLE_STATE_DISABLED
BUTTON_STYLE_STATE_INACTIVE

$10 ' if this bit is HIGH then button object is active

$00 ' if the above bit LOW then button object is inactive or grayed out
$00 ' if the above bit LOW then button object is inactive or grayed out
$00 ' if the above bit LOW then button object is inactive or grayed out

There are only two unique values ($10 and $00) right now; active and disabled. Even
though, there are two more constants defined (grayed and inactive) they use the same
value as disabled. In the future, these constants may be needed to indicate slightly
different functionality, but they are placeholders for now. For now, set all button style flags
to BUTTON_STYLE_STATE_ACTIVE.

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 9 of 49

Parallax Semiconductor ANO13

The next byte in the declaration is the identifier of the control, which is very important.
Whenever the user interacts with the GUI by clicking the button, focusing on it, losing focus,
etc. a message is generated. Part of that message contains this ID number to identify to
the user application which control generated the event. Since the user application (written
by you) originally assigned this ID number to the button control, both sides know which
button is doing what.

Therefore, these IDs typically are unique and create a 1:1 relationship with the control and
the ID—but not necessarily. An interface might require two buttons that send the same
message, but maybe these buttons are at different locations on the screen. This is perfectly
legitimate and using the same ID on two buttons would accomplish this.

It's a good convention to start groups of ID numbers on a round number, in blocks, so it is
easy to determine at a glance which set of controls the buttons are related to. One tactic is
to start each set of IDs for related controls base 8 or base 10. So, one set of controls might
have IDs (8,9,10,11,12...15) then another set (16,17,18....23) and so forth. Or, for base 10
it might have IDs (10,11,12...19) for one set and (50,51,52,...59) for another set. The point
is, don’t just use random numbers for IDs; use a convention and stick with it. However,
remember there are only 255 values available (leaving 0 as a NULL ID—a good idea).

Finally, the last bytes of the declaration are the string itself that should be drawn on the
VGA screen to label the button. This can be any size, but keeping them under 16 characters,
or 8 preferably, will give the buttons concise labels. The string must be NULL terminated
with 0.

As an example of a variety of button declarations, below are three buttons declared from
one of the upcoming demos later in the app note (stripped of all comments) to illustrate just
how simple the declarations are. This is the power of data-driven modeling. All the work is
in the API, so the user application can write these trivial data statements and create
controls.

buttonl LONG
BYTE WMF#BUTTON_STYLE TYPE STANDARD
BYTE WMF#ATTR_DRAW_NORMAL
BYTE 2, 6
BYTE WMF#BUTTON_STYLE_STATE_ACTIVE, 5@, "RED",0

button2 LONG
BYTE WMF#BUTTON_STYLE_TYPE_STANDARD
BYTE WMF#ATTR_DRAW_NORMAL | WMF#ATTR_DRAW_BORDER
BYTE 2, 9
BYTE WMF#BUTTON_STYLE_STATE ACTIVE, 51, "GREEN",0

button3 LONG
BYTE WMF#BUTTON_STYLE_TYPE_STANDARD
BYTE WMF#ATTR_DRAW_NORMAL | WMF#ATTR_DRAW_BORDER | WMF#ATTR_DRAW_SHADOW
BYTE 2, 12
BYTE WMF#BUTTON_STYLE STATE_ACTIVE, 52, "YELLOW",®

Referring to Figure 6 below, these three declarations create a set of buttons with labels
“RED"”, "GREEN"” and “YELLOW" along with all useful permutations of attributes; no border,
border, and finally border with shadow.

Notice that at the top of each declaration there is a dummy LONG. All this does is place the
control on a long boundary which might come in handy latter down the line if some of the

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 10 of 49

Parallax Semiconductor ANO13

fields are increased in size from bytes to words or longs, it will help with pointer arithmetic.
At worst it wastes 3 bytes, but if saving memory is critical then omit this LONG syntax.

Figure 6: Results of the Button Data Declarations for button1, 2, 3

Rendering Attributes

<€— "No Border"
<€— "Border"
<€ "Border + Shadow"

In most cases you will create buttons with borders. However, you might want to create a
“stacked” control with the labels right next to each other, with no borders. For example, a
number line control that looks like:

012345

...would have 6 buttons, each with no border, placed right next to each other. As the
mouse hovers over each number (button) you could click it.

After declaring all the buttons, then the next step is to attach the buttons to the WMF, so
it's aware of the controls and can start processing them and sending messages. This is
accomplished with a call to the API method AttachButton as shown below:

' attach buttons

button_idl := WMF.AttachButton(@, @buttonl)
button_id2 := WMF.AttachButton(@, @button?)
button_id3 := WMF.AttachButton(@, ebutton3)

We will discuss this step in detail in the section Attaching Controls to WMF (page 21). In
brief, the API method AttachButton is called for each button, and the method returns a
resource identifier (not to be confused with the ID of the button). This identifier is more like
an index or handle into the global control tables needed when referencing the control—more
on this later.

Creating Menu Controls

Menus are actually very complex controls. Think about all the different possible GUI
interactions with a menu—there are a lot of states to consider and a lot of graphics that
have to be updated. WMF doesn’t try to mimic menus as complex as those Windows or OS

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 11 of 49

Parallax Semiconductor ANO13

X supports with menu bars, sub-menus, and so forth. WMF’s simplified model captures the
essence of what most embedded developers need in a menu: simply to list a number of
options and then let the user hover over them, select one, and that's that.

With that in mind, refer back to Figure 4 on page 6 for reference. There are two kinds of
menus that WMF supports: the “hotbar” and “hotlist.” They both send the same kinds of
messages and do the same thing, but they just look a bit different. Hotbars are horizontal
menus that might go across the top or bottom of an application in a horizontal dominant
design. Hotbars can have borders, titles, and shadows. Hotlists on the other hand are
more like conventional menus that have a number of menu items listed in a vertical
orientation. Hotlists can also have a title, border, and shadow.

Menu controls are a more complex than buttons since they have a number of menu items
(or “hot buttons”) each which have to be drawn and tracked by the WMF event system.
Also, as the mouse hovers over the menu items they need to be highlighted and so forth, so
there is a lot more for WMF to do as well, so no one gets off easy with menus.

Like buttons, menus have a style, an (x,y) position, and rendering attributes, as well as a
definition for each menu item which is similar to a button in definition. The two menu types
are different enough that they warrant separate discussions, so let’s start with the simpler
hotbar menu.

Figure 7: Details of a HotBar

(x,y) Position

—Border (optional)

Menu Title String |user Profile Tabs

(optional) | ettty EEEITEE | Reset Password [mail]
- l i Shadow (optional)
Menu Iltems

Declaring HotBar Menus

Referring to Figure 7, a hotbar consists of a number of horizontally organized menu items
(or hot buttons) each with its own ID. These menu items may be separated by any ASCII
character, in most cases a vertical line or space. Additionally, hotbars have may an optional
border and title string. Other than having multiple menu items, hotbars aren’t declared
much differently from buttons. Here is the format of a hotbar:

DAT
hotbar_menu_format BYTE MENU_STYLE_TYPE_HOTBAR ' type of menubar, classic, hotbar, etc.
BYTE {rendering attribute flags}' generic rendering attributes, shadows, borders etc.
BYTE {ascii code} ' space filler character
BYTE x, y, width " %,y position of menu and width
BYTE {number of hot buttons} " how many hot buttons on the main menubar?
BYTE "Menu title string’,0 ' optional menu title string

" list of menu hot buttons for the menubar, each consists of the style flags,

' id, the string, and null terminator

BYTE {hot button @ style flags}, {hot button @ id}, "hot button @ title string”,0®
BYTE {hot button 1 style flags}, f{hot button 1 id}, "hot button 1 title string’,0

B?TE {hot button n style flags}, f{hot button n id}, "hot button n title string’,®

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 12 of 49

Parallax Semiconductor ANO13

The header portion of a hotbar consists of 7 bytes. These bytes define the type of hotbar,
rendering attributes, the item separator character, the (x,y) position, and overall width of
the hotbar. Finally a single byte indicates how many menu items are on the hotbar. This is
followed by an optional title string for the menu and the list of menu items themselves.
Each menu item itself consists of a style flag byte, ID number, text label string, and NULL
terminator. There is no limit to how many menu items a hotbar can have other than what
will fit on the screen.

Let’s begin with the first header byte which indicates the type or style of menu. This should
be set to MENU_STYLE_TYPE_HOTBAR. (The other type of menu MENU_STYLE_TYPE_HOTLIST is
discussed in the following section). The next field is the standard rendering attributes which
is a bitwise logical OR of the same flags available to buttons:

" general graphical rendering attributes for controls and windous
ATTR_DRAW_SHADOW $01

ATTR_DRAW_SOLID $02 ' (not implemented)

ATTR_DRAW_DASH $04 ' (not implemented)

ATTR_DRAW_BORDER $08
ATTR_DRAW_INVERSE $10
ATTR_DRAW_NORMAL $00

Like the buttons, the same style options are available for hotbars. For a hotbar without
borders or any ornamentation at all, use ATTR_DRAW_NORMAL. For a border alone use
ATTR_DRAW_BORDER. For a border and shadow simply logically OR them together like this:

ATTR_DRAW_BORDER | ATTR_DRAW_SHADOW

Next is the (x,y) position on the VGA screen, nothing new there. However, the next byte
width needs a little explanation. This data field provides more control of the overall look of
the menu bar, to make it larger than it needs to be, for example. In most cases, set this to
the size of the sum of the lengths of the menu item strings, taking into consideration a
single space between each menu item and a final space at the end.

The formula to compute width is:
width = Sum of the length of each menu item string + number of menu items + 1
For example, given two menu items “On” and “Off” width would be calculated as:
width=(2+3)+2+1=8
Obviously, the WMF could calculate this, and maybe it should. However, if you make the
width larger than it needs to be, or smaller, you can create custom controls that don't look
like normal hotbars and this might be your intent or need.
After this width byte is where the action starts, and the list of menu items starts. The first
byte is the number of menu items in the list. This is followed by an optional NULL-
terminated menu title string. Then, each menu item consists of a style flags byte, ID,

string, and NULL terminator as shown below:

BYTE {hot button 1 style flags}, {hot button 1 id}, "hot button 1 title string’,®

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 13 of 49

Parallax Semiconductor ANO13

The potential style flags are the exact same as those for buttons, but with different names:

" this style is either, so only 1 bit needed to encode, all objects are active OR they are
' grayed/disabled/inactive
MENU_STYLE_STATE_ACTIVE
MENU_STYLE_STATE_GRAYED
MENU_STYLE_STATE_DISABLED
MENU_STYLE_STATE_INACTIVE

" if this bit is HIGH then the menu object is active

" if the above bit LOW then the menu object is inactive or grayed out
" if the above bit LOW then the menu object is inactive or grayed out
$00 ' if the above bit LOW then the menu object is inactive or grayed out

o 0w
[SESN
[SESES]

As with button controls, always set the style flag to MENU_STYLE_STATE_ACTIVE. Later
versions of the WMF will support these flags more actively and draw menu items grayed out
etc. But for now, due to graphic limitations, always set this to active.

The next byte in the declaration of a menu item button is the ID number [0..255] that the
WMF sends as part of the event message when this control is clicked, so the user application
can figure out which control received the interaction. Once again, limit IDs to [1..255] for
values and use ID numbers that are in groups, especially on the same hotbar.

Finally, there is the ASCII string itself that is drawn as the label, and a NULL terminator.

That's all there is to defining each hotbar menu item. However, since hotbars are horizontal
entities with a collection of two or more menu item buttons drawn adjacent to each other,
they require a single character between them. It's up to you which space-filler character to
use.

If you enable the border attribute, set the third header byte (space filler character) to a
vertical line for a structured menu bar. On the other hand, for a more free-floating menu
bar with no border or ornamentation, an ASCII space character might be a better option.

WMF comes complete with a number of ASCII constants such as ASCII_VLINE to import into
the user app with the Spin syntax: object_name#*constant_identifier. For example, call the
WMF object "WMF” then import any constant from WMF with syntax similar to:

WMF#constant_identifier

Thus, in this case WMF#ASCII_VLINE would do the trick. WMF has a number of useful ASCII
constants in the CON section as shown below:

" box drawing characters
ASCII_HLINE = 14 ' horizontal line character
ASCII_VLINE = 15 ' vertical line character

ASCII_TOPLT
ASCII_TOPRT

10 ' top left corner character
11 ' top right corner character

ASCII_TOPT = 16 ' top "t character
ASCII_BOTT = 17 ' bottom 't character
ASCII LTT = 18 ' left "t character
ASCII_RTT = 19 ' right "t" character

12 ' bottom left character
13 ' bottom right character

ASCII_BOTLT
ASCII_BOTRT

ASCII_DITHER = 24 ' dithered pattern for shadous

NULL

@ ' NULL pointer

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 14 of 49

Parallax Semiconductor ANO13

Additionally, a number of keyboard characters and punctuation are declared, so take a look
in the CON section of WMF_Framework_010.spin to save remembering ASCII constants in
the user application.

Below is an excerpt from one of the upcoming hotbar demos that shows the hotbar
declarations in the DAT section of the demo (with some comments removed):

" begin HOTBAR —--

demo_hotbar_menu@

" end HOTBAR -----

' begin HOTBAR ---

demo_hotbar_menul

" end HOTBAR -----

' begin HOTBAR ---

demo_hotbar_menu2

" end HOTBAR -----

" begin HOTBAR ---

demo_hotbar_menu3

LONG ' start at LONG boundary

BYTE WMF#MENU_STYLE TYPE HOTBAR " type of menubar

BYTE WMF#ATTR_DRAW_NORMAL | WMF#ATTR_DRAW BORDER ' rendering attributes

BYTE WMF#ASCII_VLINE ' space filler character

BYTE 4,7,60 " %,y position of menu and width
BYTE 5 " number of menu items on hotbar?
BYTE '"User Profile Tabs',0 " optional menu title string

" list of menu titles for the menubar, each consists of the style flags, id, the
" string, and a null terminator at end

BYTE WMF#MENU_STYLE_STATE_ACTIVE, 1@, "My Profile", @ ' hotbutton 0

BYTE WMF#MENU_STYLE_STATE_ACTIVE, 11, "Update Email’, @ ' hotbutton 1

BYTE WMF#MENU_STYLE_STATE_ACTIVE, 12, "Update Address’’, @ ' hotbutton 2

BYTE WMF#MENU_STYLE_STATE_ACTIVE, 13, "Reset Password’, @ ' hotbutton 3

BYTE WMF#MENU_STYLE_STATE_ACTIVE, 14, "Mail”, @ ' hotbutton 4
LONG ' start at LONG boundary
BYTE WMF#MENU_STYLE_TYPE_HOTBAR " type of menubar
BYTE WMF#ATTR_DRAW_NORMAL | WMF#ATTR_DRAW BORDER | WMF#ATTR_DRAW_SHADOW ' attributes
BYTE WMF#ASCII_VLINE ' space filler character
BYTE 74,47,24 " %,y position of menu and width
BYTE 3 " number of menu items hotbar?
BYTE 'Language Setting’, 0 " optional menu title string

" list of menu titles for the menubar, each consists of the style flags, id, the
" string, and a null terminator at end

BYTE WMF#MENU STYLE STATE_ACTIVE, 20, "English’, @ ' hotbutton 0

BYTE WMF#MENU_STYLE_STATE_ACTIVE, 21, "French’, @ ' hotbutton 1

BYTE WMF#MENU STYLE STATE_ACTIVE, 22, "Russian’’, @ ' hotbutton 2

LONG ' start at LONG boundary

BYTE WMF#MENU_STYLE TYPE HOTBAR ' type of menubar, classic, hotbar, etc.
BYTE WMF#ATTR_DRAW_NORMAL " rendering attributes

BYTE WMF#ARSCII SPACE " space filler character

BYTE 87,2,10 " X,y position of menu and width

BYTE 2 " number of menu items hotbar?

BYTE 0 " optional menu title string

" list of menu titles for the menubar, each consists of the style flags, id, the
" string, and a null terminator at end

BYTE WMF#MENU_STYLE_STATE_ACTIVE, 31, "HTML", @ ' hotbutton 0

BYTE WMF#MENU_STYLE STATE_ACTIVE, 32, "Flash”, @ ' hotbutton 1

LONG ' start at LONG boundary

BYTE WMF#MENU_STYLE_TYPE_HOTBAR " type of menubar

BYTE WMF#ATTR_DRAW_NORMAL | WMF#ATTR_DRAW BORDER ' rendering attributes

BYTE WMF#ASCII_VLINE ' space filler character

BYTE 0,48,22 " %,y position of menu and width

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 15 of 49

Parallax Semiconductor ANO13

BYTE 3 " number of menu items hotbar?
BYTE 0 ' optional menu title string

" list of menu titles for the menubar, each consists of the style flags, id, the
' string, and a null terminator at end

BYTE WMF#MENU STYLE STATE_ACTIVE, 40, "Back', ® ' hotbutton 0

BYTE WMF#MENU STYLE STATE_ACTIVE, 41, "Forward’, @ ' hotbutton 1

BYTE WMF#MENU_STYLE_STATE_ACTIVE, 42, "Refresh”, @ ' hotbutton 2

" end HOTBAR === mm oo oo m oo oo

Although these menu declarations look lengthy, most of it is just copied and pasted with a
few changes for the menu items themselves. Figure 8 below is a screen shot of the demo
WMF_HotBarMenuDemo_010.spin which uses these declarations to create the hotbars.

Figure 8: Demo Screen Shot of the Results of the Demo HotBar Menu Declarations

Code = 8, Message ID = 14

Referring to the figure, the various hotbar declarations show the real power and flexibility of
the hotbars. Near the top left of the figure is the “User Profile Tabs.” This hotbar menu is
more or less the standard way hotbars are intended to be used with borders and a title.
The bottom right of the figure, is yet another variant, this time with a shadow, but still with
borders and a title bar. Now, where things get interesting is at the bottom left of the
figure—the hotbar with “Back,” “Forward,” and “Refresh.” This shows what the hotbar looks
like without a title bar. Finally, the top right of the figure illustrates one of the most
creative uses of the hotbar and that's to create two free-floating buttons without and
borders, title, etc. Here we see the "HTML” and “Flash” menu. Of course, this could have
been achieved with two buttons as well, but using a single hotbar menu is more concise.
Finally, ignore the “User Input Box” and “Message Box” as these are not menu controls, just
static objects drawn for the demo.

After declaring all the hotbars, the next step is to attach them to the WMF so it's aware of
the controls and can start processing them and sending messages. This is accomplished
much the same way buttons are attached, but with a slightly different API call to
AttachMenu as shown below:

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 16 of 49

Parallax Semiconductor ANO13

" attach menus
demo_hotbar_id0
demo_hotbar_idl
demo_hotbar_id2
demo_hotbar_id3

WMF . AttachMenu
WMF . AttachMenu
WMF . AttachMenu
WMF . AttachMenu

@demo_hotbar_menu®)
@demo_hotbar_menul)
@demo_hotbar_menu?)
@demo_hotbar_menu3)

[(SESESRS]

This step is discussed at length in the section below titled Attaching Controls to WMF on
page 21. But, in brief, the API method is called for each hotbar, and the method returns a
resource identifier (not to be confused with the ID of the button). This identifier is more like
an index or handle into the global control tables needed when referencing the hotbar. But
more on this later; let’s finish up with the last control supported in the WMF—the hotlist.

Figure 9: Details of a HotList

(x,y) Position

— Border (optional)

Menu Title String — Sl
(optional) |

%“ I Menu Items

Shadow (optional)

i -~ Width- - -+

Declaring HotList Menus

Referring to Figure 9, a hotlist consists of a number of vertically organized menu items (or
hot buttons), each with its own ID, and each padded to the width of the control itself.
Additionally, hotlists have an optional border and title string. Hotlists are nearly identical to
hotbars from a definition perspective, but they are simply vertically oriented and more
traditional when rendered. In fact, hotlists are simpler than hotbars since there is no need
to compute the width, simply set the width equal to or greater than the max of the largest
menu item string or title string along with room for the borders (if you select them). Here
is the format of a hotlist:

DAT
hotlist menu_format BYTE MENU_STYLE TYPE HOTLIST " type of menubar, hotlist, hotbar, etc.
BYTE {rendering attribute flags}' rendering attributes, shadow, borders, etc.
BYTE {ascii code} " space filler character/unused currently
BYTE x, y, width " X,y position of menu and width
BYTE {number of hot buttons} " how many menu items/hot buttons on the menubar?
BYTE "Menu title string’’,0 " optional menu title string
" list of menu items for the menubar, each consists of the style flags, id, the
string,

" and the null terminator
BYTE {hot button @ style flags}, {hot button @ id}, "hot button @ title string’,0
BYTE {hot button 1 style flags}, f{hot button 1 id}, "hot button 1 title string’,®

BYTE {hot button n style flags}, {hot button n id}, "hot button n title string’,0

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 17 of 49

Parallax Semiconductor ANO13

The header portion of a hotlist consists of 7 bytes and is identical to the hotbar’s format, but
slightly different in functionality. The first byte is once again the type of menu, in this case
MENU_STYLE_TYPE_HOTLIST. The next byte defines the hotlist rendering attributes such as
borders and shadow. Next is the item separator/space filler character, which is unused
currently in hotlists, but maintained to keep binary compatibility with the hotbar. In the
future it might be used to fill the white space in the hotlist with something other than the
ASCII space ™ “ character. So, for now, make it anything you wish; it is ignored.

To use a hotlist binary declaration and hotbar interchangeably (so the user can click a
button and change the layout from horizontal to vertical orientation), use a space filler
character like the vertical line, so a menu converted from hotlist to hotbar will still look
reasonable with a border.

Moving on, the next data fields are the x,y position and the overall width of the hotlist.
Finally, a single byte indicates how many menu items are on the hotlist. This is followed by
an optional title string for the menu and the list of menu items themselves. Each menu
item itself consists of a style flag byte, ID number, text label string, and NULL terminator.
There is no limit to how many menu items a hotlist can have other than what will fit on the
screen.

Since hotbars and hotlists are nearly identical, the setup is nearly the same, other than the
type byte, and the computation of the width. The hotlist is a vertical version of the hotbar,
and vice versa.

With that in mind, the first byte should be set to MENU_STYLE_TYPE_HOTLIST. The next field
is the standard rendering attributes which is a bitwise logical OR of the same flags available
to buttons and hotbars:

" general graphical rendering attributes for controls and windouws
ATTR_DRAW_SHADOW $01

ATTR_DRAW_SOLID $02 ' (not implemented)

ATTR_DRAW_DASH $04 ' (not implemented)

ATTR_DRAW_BORDER $08
ATTR_DRAW_INVERSE $10
ATTR_DRAW_NORMAL $00

Just like the hotbar, the same options are available. For a hotlist without any borders at all
or any ornamentation then use ATTR_DRAW_NORMAL. For a border use ATTR_DRAW_BORDER.
For a border and shadow simply logically OR them together.

Next is the (x,y) position on the VGA screen, nothing new there. The next byte width is
simplified now from the hotbar. Simply set the width equal to this method:

width = MAX(title string, largest menu item string) + padding for borders

So, if a title string is 20 characters, but the largest menu item is 5 characters, the width still
needs to be at least 20 characters plus space for the borders. Therefore, if you have
borders on the control then add a “+2” to the width and that’s it. Of course, you can make
the menu wider if you like as well.

After the width byte is where the list of menu items starts in the exact same format as
hotbars. The first byte is the number of menu items in the list. Then each menu item
consists of a style flags byte, ID, string, and NULL terminator as shown below:

BYTE {hot button 1 style flags}, {hot button 1 id}, "hot button 1 title string’,®

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 18 of 49

Parallax Semiconductor ANO13

The potential style flags are the exact same as those for buttons, but with different names
as shown below:

" this style is either, so only 1 bit needed to encode, all objects are active OR they are
' grayed/disabled/inactive
MENU_STYLE_STATE_ACTIVE
MENU_STYLE_STATE_GRAYED
MENU_STYLE_STATE_DISABLED
MENU_STYLE_STATE_INACTIVE

" if this bit is HIGH then the menu object is active

" if the above bit LOW then the menu object is inactive or grayed out
" if the above bit LOW then the menu object is inactive or grayed out
$00 ' if the above bit LOW then the menu object is inactive or grayed out

o 0 v
[SESN
[SESES]

As with hotbar controls, always set the style flag to MENU_STYLE_STATE_ACTIVE. Later
versions of the WMF will support these flags more actively and draw menu items grayed out
etc. But for now, due to graphic limitations, always set this to active.

The next byte in the declaration of a menu item button is the ID number. Again, simply a
number [0..255] that the WMF will send as part of the event message when this control is
clicked, so the user application can figure out which control was interacted with. Once
again, limit ID values to [1..255] and use ID numbers that are in groups, especially on the
same hotbar.

Finally, is the ASCII string itself that is drawn as the label and a NULL terminator.

Below is an excerpt from one of the upcoming hotlist demos that shows the hotlist
declarations in the DAT section (with some comments removed):

" begin HOTLIST mmmmmmmmm oo oo oo

demo_hotlist_menu@ LONG ' start at LONG boundary

BYTE WMF#MENU_STYLE_TYPE_HOTLIST " type of menubar.

BYTE WMF#ATTR_DRAW_NORMAL | WMF#ATTR_DRAW_BORDER ' rendering attributes

BYTE WMF#ASCII_VLINE ' space filler character

BYTE 4,5,12 " X,y position of menu and width
BYTE 2 " number of menu items/hot buttons
BYTE © " optional menu title string

" list of menu titles for the menubar, each consists of the style flags, id, the
" string, and a null terminator at end
BYTE WMF#MENU_STYLE_STATE_ACTIVE, 10, "Power ON", ® ' hotbutton 0
BYTE WMF#MENU_STYLE_STATE_ACTIVE, 11, "Power OFF", @ ' hotbutton 1
" end HOTLIST ———=———-———mm——mmmmmmm oo
" oegin ROTLIST s=====s===============================s==s===============c=====

demo_hotlist menul LONG ' start at LONG boundary

BYTE WMF#MENU_STYLE_TYPE HOTLIST " type of menubar

BYTE WMF#ATTR_DRAW_NORMAL | WMF#ATTR_DRAW_BORDER ' rendering attributes

BYTE WMF#ASCII VLINE ' space filler character

BYTE 20,7,18 " X,y position of menu and width
BYTE & " number of menu items/hot buttons
BYTE "Paint Colors', @ " optional menu title string

" list of menu titles for the menubar, each consists of the style flags, id, the
"string, and a null terminator at end

BYTE WMF#MENU_STYLE_STATE_ACTIVE, 2@, "Forrest Green', 0 ' hotbutton
BYTE WMF#MENU STYLE STATE_ACTIVE, 21, "Yellow Gumdrop™”, @ ' hotbutton
BYTE WMF#MENU_STYLE_STATE_ACTIVE, 22, "Blueberry Chill”, @ ' hotbutton
BYTE WMF#MENU STYLE STATE_ACTIVE, 23, "Titanium White”, @ ' hotbutton

WS

" end HOTLIST mmmmmmm oo oo oo

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 19 of 49

Parallax Semiconductor ANO13

" begin HOTLIST === oo oo oo oo oo

demo_hotlist_menu2 LONG ' start at LONG boundary

BYTE WMF#MENU_STYLE TYPE_HOTLIST " type of menubar

BYTE WMF#ATTR_DRAW_NORMAL | WMF#ATTR_DRAW_BORDER | WMF#ATTR_DRAW_SHADOW ' attributes
BYTE WMF#ASCII VLINE ' space filler character

BYTE 20,17,15 " X,y position of menu and width
BYTE 3 " number of menu items/hot buttons
BYTE "Spray Nozzles', 0 " optional menu title string

" list of menu titles for the menubar, each consists of the style flags, id, the
" string, and a null terminator at end

BYTE WMF#MENU_STYLE_STATE_ACTIVE, 30, "Wide", @ ' hotbutton 0

BYTE WMF#MENU_STYLE_STATE_ACTIVE, 31, "Narrow'’, @ ' hotbutton 1

BYTE WMF#MENU STYLE STATE_ACTIVE, 32, "Diffuse’’, @ ' hotbutton 2

" end HOTLIST = mmmmm oo o oo oo oo oo

Figure 10 below is a screen shot of WMF_HotListMenuDemo_010.spin which uses these
declarations to create the hotlists.

Figure 10: Demo Screen Shot of the Results of the Demo HotList Menu Declarations

Parallax Window Manager Framework | HotList Demo | <c> Parallax 2811

Power ON Paint Colors

Power OFF
Forrest Green
Yellow Gumdrop
Blueberry Chill
Titanium White

Spray Nozzles

Mide
N

KEYBOARD>

L
uimliSe

Referring to the figure, the various hotlist declarations show the power and flexibility of the
hotlists. From top left moving clockwise there are examples of borders with no title,
borders with title, and finally borders, title, and shadow.

As usual, after declaring all the hotlist controls, the next step is to attach them to the WMF
so it's aware of the controls and can start processing them and sending messages. This is
accomplished with the same AttachMenu method call used to attach hotbars, as shown
below:

attach menus
demo_hotlist_id0
demo_hotlist_idl
demo_hotlist_id2

WMF . AttachMenu(@, @demo_hotlist_menu®)
WMF . AttachMenu(@, @demo_hotlist_menul)
WMF . AttachMenu(@, @demo_hotlist_menu?)

Since both hotbars and hotlists share the same root type “menu,” the WMF framework can
share a lot of software. In fact, the menus are processed by the exact same methods. All
the methods need to do is change how the menus are drawn and how collision detection is
done. O, but other than that a lot of software is re-used, which is key on a microcontroller.

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 20 of 49

Parallax Semiconductor ANO13

Attaching Controls to WMF

After declaring all the controls in DAT statements then its time to attach them to WMF so it
can start processing them and sending messages. WMF currently supports up to 16 buttons
and 8 menu bars. These maximum values are set in WMF_Framework_010.spin in the
constants section and declared in the VAR section at the top of the program. If you need
more controls then simply locate and change these two constants:

" windowing "controls’ constants

NUM_MENUBARS = 8 ' up to 8 total menubars, change this if you need more
" in most cases, you will only have a single classic menu bar
" and / or multiple hotbar menus since they are like buttons

NUM_BUTTONS = 16 ' up to 16 total buttons, change this if you need more

NUM_MESSAGES = 16 ' size of message queue, holds up to 8 messages

Also shown is the constant for the number of messages that the message queue can hold.
This only needs to be increased if the user application won’t be interrogating the message
queue each cycle. In that case, the messages can pile up quickly (especially for buttons)
and overflow the queue.

The buttons and menu controls are nothing more than LONG arrays with some attribute
information in the upper WORD and a pointer to the data declaration of the control. These
data structures are shown below for completeness:

' menubar data structures
' each menubar control consists of a LONG record that refers to a single menubar
" the format is:
[16-bit generic flags for future use | 16-bit pointer to menu data structure]
: [menuFlags:16 | menuPtr:16]
long gMenuBar[NUM_MENUBARS]

" button data structures

" each button control consists of a LONG record that refers to a single button

" the format is
:[16-bit generic flags for future use | 16-bit pointer to button data structure]
:[buttonFlags:16 | buttonPtr:16]

long gButton[NUM_BUTTONS]

There are also a number of ancillary data structures for these controls, but it isn’t important
to use them. The important thing to remember is if you need more control slots, then you
have to make adjustments in the WMF_Framework_010.spin file and change the constants.

Attaching Buttons

There are two sets of methods that attach and detach buttons and menus. For buttons, the
attaching method is:

PUB AttachButton (pButtonFlags, pButtonPtr)

pButtonFlags is for future expansion, set to 0 for now.
pButtonP+tr is a pointer to the first byte of the button declaration.

The method searches through the button list, locates an available slot, and returns an
integer resource identifier or “handle” to that slot. This ID (not to be confused with the IDs

GUI & Graphics Series — Menus and Messaging with the Propeller Window Manager Framework v1.0 21 0f 49

Parallax Semiconductor ANO13

you set for your buttons) is needed to reference the control in all API methods. The ID is
actually the array index in the global gButton[] array that the control ends up in, but that
could change in the future.

If a button doesn’t need to be processed anymore, it can be detached from the WMF with a
call to DetachButton shown below:

PUB DetachButton(id)
id is simply the return value from the original call to ARttachButton.

After attaching the buttons to the WMF, make an initial call to draw the control. This is
required to get it on the screen initially, then from there WMF will handle the refresh of the
control. However, if you damage the VGA surface with your own calls and disturb the
controls, it's a good idea to ca