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Application Note AN008 

Sigma-delta Analog to Digital Conversion 
Abstract: Perform basic sigma-delta analog to digital conversion with any of the P8X32A's 
eight cogs, on any pair of I/O pins, and with a few inexpensive passive components. 
Variations on this simple technique include calibration options, multiple analog inputs, 
converting from AC sources such as a microphone, and accommodating extended input 
voltage ranges. 

Introduction 
Each of the Propeller’s eight cores, or cogs, has two configurable counter modules[1]. Each 
of these modules, along with some external passive components, can be set up to do 
analog-to-digital conversion using a “sigma-delta” technique. This is a method that keeps a 
summing junction balanced by the rapid application of high and low logic levels and by 
keeping track of how many such corrections it takes to maintain a constant voltage. 

Sigma-Delta Principle 
Most engineers who work with analog circuits are familiar with the inverting operational 
amplifier circuit, shown in Figure 1. 
 
Figure 1: Inverting Operational Amplifier Circuit 
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The output of the amplifier changes in such a way to keep its minus input (the summing 
junction) voltage equal to its plus input voltage, regardless of the value of the analog input. 
In this case, assuming the analog input is zero, the amplifier output will have to equal Vdd 
for the summing junction to remain balanced with the plus input at Vdd/2. Conversely, if 
the analog input is Vdd, the amplifier output will have to be zero to maintain the same 
balance. 
 
Now, replace the op amp with a CMOS D flip-flop clocked at a high frequency (Figure 2): 
 
Figure 2: CMOS D Flip-Flop 
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As in the case with the op amp, the negative feedback from the flip-flop (filtered by a cap 
now) will tend to keep the summing junction as close to the D input’s logic threshold, 
Vdd/2, as possible. If the analog input is zero volts, the /Q output will have to remain at 
Vdd (i.e. logical one) for this to happen. Conversely, if the analog input is Vdd, the /Q 
output will have to remain at Vss (i.e. logical zero). In between, the /Q pin will output a 
digital pulse train whose average duty cycle is proportional to the amount of correction 
required to keep the D input balanced at Vdd/2. If the analog input were Vdd/4, for 
example, the /Q output would need to have a positive duty cycle of 75% to keep the D 
input at Vdd/2. 
 
To determine the value of the analog input voltage, it would only be necessary to measure 
the duty cycle of the corrective /Q output. However, since /Q is inverted, it’s the Q 
output’s duty cycle that is proportional to the analog input voltage. And this duty cycle can 
be measured simply by counting the number of times the Q output is high for a given 
number of clocks. This, then, is the essence of sigma-delta analog-to-digital conversion. 

Propeller Sigma-Delta Application 

Counter Registers 

The Propeller provides the necessary hardware to perform sigma-delta analog-to-digital 
conversions quite easily. To do so requires using the global count register, CNT, along with 
one of the cog’s configurable counters. The global count register increments by one with 
each “tick” of the internal clock, rolling over to zero after reaching a count of $FFFF_FFFF 
(232 – 1). With an 80 MHz internal clock, one complete cycle of CNT takes about 53 seconds. 
 
Each cog has two configurable counters. Each counter comprises three special-function 
registers: CTRx, FRQx, and PHSx, where the “x” can be either A or B, depending on which 
counter is referenced. 
 
The CTRx register contents determine which counter mode and associated external ports 
the counter uses. For sigma-delta operation, the counter mode is “positive with feedback.” 
This means that the counter counts up for every clock cycle in which its input is a logic 
“high.” It also means that the counter’s output pin will equal the inverse of its input pin, 
delayed by one processor clock. Here is the layout of the CTRx register, configured for 
sigma-delta operation (Figure 3): 
 
Figure 3: CTRx Register Configured for Sigma-delta Operation 
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The PHSx register accumulates the counter’s counts, counting up by the amount in FRQx at 
each clock cycle in which the input pin is a logic high. Typically, for sigma-delta operation, 
FRQx is set to one. 
 
Configured in this manner, the counter mimics the behavior of the D flip-flop in Figure 2, 
wherein the /Q output corresponds to the feedback pin and the Q output gates the up-
counter. 
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Hardware Configuration 

The circuit in Figure 2 represents an idealized situation, in which the logic threshold is 
exactly Vdd/2 and in which the /Q high output is exactly Vdd and its low output, exactly 0. 
Because these conditions seldom exist in reality, it is necessary to reduce the gain of the 
circuit to less than unity in order to accommodate a full analog input range of 0 to Vdd. 
Otherwise, the conversion could be clipped at the high or low end of the range. Figure 4 
illustrates the circuit most commonly used with the Propeller to perform sigma-delta analog-
to-digital conversion: 
 
Figure 4: Sigma-delta ADC Circuit 
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When the analog input is zero, the counter feedback output will have a nominal duty cycle 
of 83.33%. When the input equals Vdd, the feedback’s nominal duty cycle will be 16.67%. 
This provides enough of a margin at both extremes to accommodate the circuit variations 
described above. 
 
The circuit in Figure 4 includes a capacitor to Vdd, in addition to the one to ground. This is 
done to prevent noise on the power and/or ground rails from affecting the voltage at the 
summing junction asymmetrically, which could lead to sporadic conversion results. 
 

Layout Considerations 

For best performance, the passive components shown in Figure 4 should be positioned very 
close to the Propeller’s input and feedback pins. The use of surface-mount components will 
help to ensure that this objective is met. A typical layout is shown in Figure 5. 
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Figure 5: Typical Surface-Mount Layout  

 
 
Also note from this photo that the corner of the chip package separates the counter input 
and output pins. Using pins that are not physically adjacent helps to prevent capacitive 
coupling from the output pin directly into the input pin. 
 

Software Procedure 

To set up the counter for sigma-delta operation, follow these steps: 
 

1. Set FRQx to equal 1. 
2. Set CTRx as shown in Figure 3. 
3. Set the DIRA bit corresponding to the feedback pin to 1, thus making it an output. 

 
To obtain an analog-to-digital conversion (in PASM), do this: 
 

1. Copy CNT to a variable, time, and add 16. 
2. WAITCNT time, interval to sync (which also adds interval to time). 
3. NEGate PHSx into the result register. 
4. WAITCNT time for interval to pass. 
5. ADD PHSx into the result register. 

 
What this does is to sample how much PHSx has increased during interval processor 
clocks. This increase will be proportional to the input voltage (plus an offset). 
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The following Propeller Assembly (PASM) code snippet illustrates the above steps. 
 
'' Listing 1 
CON 
   INP_PIN        = 8           'Counter input pin for sigma-delta. 
   FB_PIN         = 9           'Counter feedback pin for sigma-delta. 
   ADC_INTERVAL   = 512         'Time interval over which to accumulate counts. 
 
DAT 
              org       0 
adc_cog       mov       frqa,#1                 'Initialize frqa to count up by one. 
              movi      ctra,#%0_01001_000      'Set ctra mode to positive w/feedback. 
              movd      ctra,#FB_PIN            'Write fback pin number to dst field. 
              movs      ctra,#INP_PIN           'Write input pin number to src field. 
              mov       dira,fb_mask            'Make the feedback pin an output. 
              mov       result_addr,par         'Save @value into result_addr. 
           
main_loop     call      #adc                    'Get a new acquisition. 
              wrlong    acc,result_addr         'Write result to hub. 
              jmp       #main_loop              'Back for another. 
 
adc           mov       time,cnt                'Get the current counter value. 
              add       time,#16                'Add a little to get ahead. 
              waitcnt   time,interval           'Sync to clock; add interval to time. 
              neg       acc,phsa                'Negate phsa into result. 
              waitcnt   time,#0                 'Wait for interval to pass. 
              add       acc,phsa                'Add phsa into result. 
adc_ret       ret 
 
fb_mask       long      1 << FB_PIN             'Mask for feedback pin. 
result_addr   long      0-0                     'Result address gets plugged in here. 
interval      long      ADC_INTERVAL            'Acquisition time. 
 
acc           res       1                       'General-purpose accumulator. 
time          res       1                       'Time variable use for waitcnt. 
 
Once the setup phase is complete, main_loop calls adc repeatedly and writes the result to a 
pre-determined location in the hub. The PAR register specifies this location when the PASM 
cog is started, via cognew: 
 
cognew(@adc_cog, @value) 
 
The scale factor of the result and the size of any offset will both be proportional to the 
number used for interval. The magnitude of interval determines the precision of the 
result. For eight bits of precision, say, interval would ideally equal 256; for nine bits, 512; 
and so forth. In other words, for eight bits of precision, the PHSx register would contain a 
count of how many times in 256 internal clocks the counter input was above the logic 
threshold. But, because the input gain is less than unity, those eight bits will encompass 
more than a 0-to-Vdd analog input range. Therefore, it will be necessary to increase the 
value of interval to scale the desired input range to eight bits. 
 

Calibration 

For the most accurate results, it is necessary to calibrate the sigma-delta ADC to the high 
and low endpoints of its input range. This requires that the ADC be presented with the 
endpoint voltages in order to obtain readings from them. From a hardware standpoint, this 
can be accomplished in several ways. If the analog device itself can output the endpoint 
voltages, no additional hardware is necessary. If not, there are a couple techniques that will 
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work. In the typical case where the analog range is Vss to Vdd, the circuit in Figure 6 is 
appropriate. 
 
Figure 6: Calibration Circuit for Analog Range of Vss to Vdd 
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In this circuit, an additional Propeller pin is used to provide the Vss and Vdd calibration 
levels. The resistor R must be large enough not to overload the calibration pin or analog 
source, but small enough not to skew the circuit’s gain once the calibration pin is tri-stated. 
 
Another technique, which overcomes the limitations of the circuit in Figure 6, is to use an 
analog multiplexer, as shown in Figure 7. 
 
Figure 7: Analog Multiplexer 
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Here, the calibration inputs can be selected at will without having to consider or compensate 
for loading effects. 
 
From a software standpoint, there are two approaches available for calibration. The simplest 
is to pick a value for the sampling interval that is known to be larger than what is required 
for the desired precision, then to scale the result based on the calibration data. This is 
easiest if the scaling can be done in Spin, rather than PASM, after the raw ADC value is 
acquired: 
 
scaled := (raw - vlo) * RANGE / (vhi - vlo) #> 0 <# RANGE 
 
In this expression, raw is the current raw sigma-delta reading, vlo is the raw reading for 
the low-end calibration, vhi is the raw reading for the high-end calibration, and RANGE is the 
highest value of the desired precision. This expression also clips the scaled value to lie 
within the [0, RANGE] closed interval. Note that RANGE does not have to be a power of two; it 
can be any positive number. 
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The two main disadvantages of this method are: 
 

1. Unless interval is very large with respect to RANGE, the scaled result will exhibit 
non-linearities in the least-significant bit due to unequal step sizes. 

2. Since interval needs to be extra large, the conversion time is longer than it would 
otherwise need to be. 

 
The other technique is to determine ahead of time the value for interval that will produce 
the desired precision with just an offset correction and no scaling. This involves successive 
sampling of Vdd and Vss with candidate values of interval until the optimum value is 
obtained. This technique lends itself to a binary search, such as that illustrated in Listing 2. 
 
Notice in this listing that after each step change in the calibration output, the routine soak is 
called. The soak delay (i.e. sample period) ensures that the analog input and counter 
feedback have ample time to re-equalize due to the sudden input change before the next 
acquisition. Also notice that in main_loop, after calling adc, the low reading (i.e. offset) gets 
subtracted from the raw reading to yield the corrected reading. It may also be desirable at 
this point to limit the corrected reading to the closed interval [0, range]. The maxs and mins 
instructions can be employed to do this, after subtracting loresult: 
 
 maxs acc,range 
 mins acc,#0 
 
Finally, although the code in this listing is geared toward the calibration circuit given in 
Figure 6, it can easily be modified to accommodate the circuit of Figure 7 by toggling the 
multiplexer channel select pins, instead of toggling the calibration pin up and down. 
 
'' Listing 2 
adc_cog       mov       frqa,#1                 'Initialize frqa to count up by one. 
              movi      ctra,#%0_01001_000      'Set ctra mode to positive w/feedback. 
              movd      ctra,#FB_PIN            'Write fback pin number to dst field. 
              movs      ctra,#INP_PIN           'Write input pin number to src field. 
              mov       dira,fb_mask            'Make the feedback pin an output. 
              mov       result_addr,par         'Save @value into result_addr. 
           
calibrate     or        dira,calib_mask         'Make calibration pin an output. 
              mov       interval,interval0      'Initialize acquisition interval. 
              mov       dinterval,interval0     'Initialize delta interval 
              shr       dinterval,#1            '   to interval/2.   
 
:searchlp     andn      outa,calib_mask         'Output 0V on calibration pin. 
              call      #soak                   'Delay to accommodate step change. 
              call      #adc                    'Get the result. 
              mov       loresult,acc            'Save as the low value. 
              or        outa,calib_mask         'Output Vdd on calibration pin. 
              call      #soak                   'Delay to accommodate step change. 
              call      #adc                    'Get the result. 
              sub       acc,loresult            'Subtract low value to get the range. 
              cmp       acc,range wc,wz         'Compare range with desired range. 
        if_z jmp       #:got_it                 'Done if spot on. 
         
              sumnc     interval,dinterval      'Subtract if too high, add if too low. 
              shr       dinterval,#1 wz         'Cut delta interval in half. 
        if_nz jmp       #:searchlp              'Done if now zero, loop if not. 
 
:got_it       andn      dira,calib_mask         'Done: tristate calibration pin. 
main_loop     call      #adc                    'Get a new acquisition. 
              sub       acc,loresult            'Subtract the reading for 0V. 
              wrlong    acc,result_addr         'Write result to hub. 
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              jmp       #main_loop              'Back for another. 
 
soak          mov       time,cnt                'Give the caps a chance to charge 
              add       time,soak_time          '  by waiting for soak time... 
              waitcnt   time,#0 
soak_ret      ret 
 
adc           mov       time,cnt                'Get the current counter value. 
              add       time,#16                'Add a little to get ahead. 
              waitcnt   time,interval           'Sync to clock; add interval to time. 
              neg       acc,phsa                'Negate phsa into result. 
              waitcnt   time,#0                 'Wait for interval to pass. 
              add       acc,phsa                'Add phsa into result. 
adc_ret       ret 
 
interval0     long      ADC_INTERVAL0           'Initial acquisition interval. 
range         long      ADC_RANGE               'Desired ADC range. 
fb_mask       long      1 << FB_PIN             'Mask for feedback pin. 
calib_mask    long      1 << CALIB_PIN          'Mask for calibration pin. 
soak_time     long      40_000                  'Sample (pre-soak) time for calib. 
result_addr   long      0-0                     'Result address gets plugged in here. 
 
interval      res       1                       'Acquisition time. 
dinterval     res       1                       'Delta interval for search. 
acc           res       1                       'General-purpose accumulator. 
time          res       1                       'Time variable use for waitcnt. 
loresult      res       1                       'ADC raw result for low end of range.  

Variations on a Theme 
The sigma-delta technique lends itself to many variations that can be implemented to meet 
specific needs, such as multiple inputs, inputs from AC sources (such as audio), and inputs 
with extended voltage ranges. 

Multiple Inputs 

Multiple analog inputs can be accommodated with a single feedback pin  
 
Figure 8: Multiple Analog Inputs 
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To switch from one input to another, reload the source field (bits 8..0) of CTRx with the new 
input pin number. Although Figure 8 shows two analog inputs, this technique can be 
extended to a larger number, as long as the passive components can be kept close to their 
associated Propeller pins. The one major caveat is that, after switching inputs, it is 
necessary to delay long enough before taking the first reading for the summing junction 
caps on the new input to recharge to the input pin’s logic threshold. Also, when combined 
with a need for calibration, it may be more advantageous from a pin count standpoint to use 
an analog multiplexer, as shown in Figure 7. 

Converting from AC Sources 

The sigma-delta analog inputs do not need to be DC-coupled. For reading AC signals, such 
as audio, capacitive coupling will also work, as shown in Figure 9. (This, by the way, is the 
circuit used for the microphone input on the Propeller Demo Board[2].) 
 
Figure 9: Capacitive Coupling for Reading AC Signals 
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Extended Voltage Ranges 

The sigma-delta converter’s input range can be extended by choosing a larger input resistor 
and/or by adding some biasing via a pull-up or pull-down resistor. In the “standard” circuit 
with the 150 k input resistor, the nominal input voltage range (without considering offsets, 
etc.) is -0.825 V to +4.125 V. Notice that this range centers around the input logic 
threshold, which is nominally 1.65 V (Vdd/2) when Vdd  is 3.3 V. To shift the center of the 
range, it is necessary to add some biasing. For example, suppose the desired input range 
were 0 to +10 V, which centers on +5 V. This would entail using a pull-down resistor on the 
summing junction to re-center the range to 1.65 V, as shown in Figure 10. 
 
Figure 10: Extended Voltage Ranges 
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With the input at VHI = +10 V and the counter output at 0 V, the summing junction must 
remain fixed at 1.65 V. Likewise, it must still be at 1.65 V when the input is at VLO = 0 V 
and the counter output is 3.3 V. Computing R1 and R2 entails solving the following pair of 
simultaneous equations: 
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...where the resistances are in k. 
 

Solving these two equations for R1 and R2 yields: 
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To guarantee that the entire 0-10 V range is covered without clipping at the high or low end 
due to chip variations from the nominal input threshold, extend the limits above and below 
the 5 V center value by about 50%, making the nominal range from –2.5 V to +12.5 V. 
Plugging these values in for VLO and VHI, respectively, yields 455 k for R1 and 224 k for 
R2. 
If the result for R2 in the above equation is negative, simply change its sign and make it a 
pull-up to Vdd, instead of a pull-down to Vss. If the computed value for R2 is infinite, just 
leave it out entirely. 

Resources 
Listing 1 and Listing 2 code archives zip file: www.parallaxsemiconductor.com/an008 

References 
1. See AN001: Propeller P8X32A Counters; www.parallaxsemiconductor.com/an001 
2. Propeller Demo Board; Parallax #32100, www.parallax.com  

Revision History 
Version 1.0: Original document. 
 

Parallax, Inc., dba Parallax Semiconductor, makes no warranty, representation or guarantee regarding the suitability of its products 
for any particular purpose, nor does Parallax, Inc., dba Parallax Semiconductor, assume any liability arising out of the application or 
use of any product, and specifically disclaims any and all liability, including without limitation consequential or incidental damages 
even if Parallax, Inc., dba Parallax Semiconductor, has been advised of the possibility of such damages. Reproduction of this 
document in whole or in part is prohibited without the prior written consent of Parallax, Inc., dba Parallax Semiconductor.  
 
Copyright © 2011 Parallax, Inc. dba Parallax Semiconductor. All rights are reserved. 
Propeller and Parallax Semiconductor are trademarks of Parallax, Inc. 


	Sigma-delta Analog to Digital Conversion
	Introduction
	Sigma-Delta Principle
	Propeller Sigma-Delta Application
	Variations on a Theme
	Resources
	References
	Revision History


