

www.paral laxsemiconductor .com
sa les@paral laxsemiconductor.com
support@paral laxsemiconductor.com
phone: 916 ‐632 ‐4664 • fax:916 ‐624 ‐8003

Interfacing the Propeller to External SRAM with SPI v1.0 1 of 25

Application Note AN012

Interfacing the Propeller to External SRAM with SPI

This application note describes how to interface external SPI-based SRAM to the Propeller
P8X32A multicore microcontroller. The Microchip 23K256 32 KB SPI SRAM is used as an
example. A complete API developed in Spin supports reading, writing, block operations, as
well as support for an advanced local memory cache.

Introduction
If there is one thing embedded programmers can never have enough of it’s memory. Code
space, data space—more is better, always. That said, microcontroller manufacturers must
balance large on-die silicon memory with cost analysis and try to select the amount of
memory that makes the most sense for the majority of applications. However, if you find
that you need more memory then external memory over a serial or parallel bus might be
the way to go.

Microcontrollers, unlike microprocessors, usually do not come with external bus interfaces.
This wastes precious I/O pins for limited gains in most applications to support external data,
address, and control buses. Nonetheless, some microcontrollers do have external bus
interfaces allowing designers to augment their on-chip memory map with external RAM and
FLASH memories. The nice thing about this is when you add more memory it integrates
right into the controller’s memory map, so you don’t have to change your programming,
just the hardware.

However, microcontrollers that support external bus interfaces are usually 100+ pins, more
expensive, and lack other I/O features. That said, the other option to add memory to a
microcontroller is external non-integrated memory that is interfaced via a driver and either
a serial or parallel bus interface.

Obviously a parallel bus is going to be faster than a serial configuration, but parallel buses
again require a large number of I/O pins (8-12 in most cases) to support a byte-wide bus
transfer plus control signals and latches for the address bus. Such a hardware design is
non-trivial and expensive, but if the ultimate in speed is the goal then this is the way to go.

A simple option that takes very little hardware skill is to use a serial interfaced external
memory. This is the approach used here. Moreover, we are going to focus on adding SRAM
rather than more FLASH, but the concept is the same: to use a serial communication
scheme.

With that in mind, the SPI protocol was selected for its sheer speed (in excess of 25 MHz
with 100 MHz quad SPI devices now available) which, with the right driver, can almost
match internal memory with a multi-cog driver design (more on this later).

The next step is the selection of an external SPI SRAM. At this point, a number of
companies develop SPI SRAM devices including On Semiconductor, Intersil, Maxim, NXP,
and Microchip to name a few. And all of their SPI SRAM devices function more or less the
same due to JEDEC[1] compliance. Thus, the pinouts of most are nearly identical and the

Parallax Semiconductor AN012

command protocols overlap quite a bit, so once you write one driver, switching devices
takes very little software porting. That said, the Microchip 23K256 device selected here is
readily available, economical in low quantities, and comes in both SMT as well as a nice DIP
8 package (Figure 1) which is great for prototyping.

Figure 1: DIP Version of the Microchip 23K256 32K Serial SPI SRAM

The 23K256 features a 32 K-byte / 256 K-bit storage capacity and 20 MHz operation. The
plan is to write a Spin-based driver that allows reading, writing and block operations to be
performed with the external SRAM. Additionally, the examples illustrate how to implement a
high-speed local memory cache. This cache in essence permits access to the external SPI
SRAM a “page” at a time (usually 128, 256, or 512 bytes) and if the page is currently
cached in local memory then the driver re-directs to local memory and doesn’t need to go
out to the slower external SPI SRAM. The only time the SRAM is accessed is when a page
fault occurs or the page is “dirty” and needs to be written back to the RAM.

SPI Protocol Primer
SPI stands for Serial Peripheral Interface, originally developed by Motorola. It’s one of most
popular modern serial standards including I2C (Inter Integrated Circuit developed by
Phillips). SPI (unlike I2C which has no separate clock) is a clocked synchronous serial
protocol that supports full duplex communication from master to slave. I2C only requires
two wires and a ground; SPI needs 3 wires, ground, and chip select line(s) to enable the
slave devices. Due to the synchronous separate clock line SPI is much faster, so in cases
where speed is desired the extra clock line is warranted and SPI is used.

However, the advantage of I2C is that you can connect up to 127 I2C devices on the same
2-bus lines, due to the shared bus protocol and unique addressing. On the other hand, SPI
bus protocol requires that every SPI slave has its own chip select line and only a single SPI
device at a time can use the bus. So, if you need speed, use SPI; if you need a lot of
devices to share a bus, use I2C.

Figure 2: The SPI Electrical Interface

Interfacing the Propeller to External SRAM with SPI v1.0 2 of 25

Parallax Semiconductor AN012

SPI Bus Basics

Figure 2 depicts a simple diagram between a master (left) and a slave (right) SPI device
and the signals between them which are (along with common aliases):

 SCLK/SCK — Serial Clock (output from master).

 MOSI/SI — Master Output, Slave Input (output from master).

 MISO/SO — Master Input, Slave Output (output from slave).

 CS/SS — Chip/Slave Select (active LOW; output from master).

Note that some devices may have slightly different naming conventions, but there will
always be data out, data in, a clock, and a chip select pin.

SPI is very fast since not only is it clocked, but it’s a simultaneous full duplex protocol which
means that data clocks out of the master into the slave, data also clocks from the slave into
the master at the same time. This is facilitated by transmit and receive bit buffers that
constantly re-circulate, as shown in Figure 3 below.

Figure 3: Circular SPI Buffers

The use of the circular buffers make it possible to send and receive data (2 bytes total data
transmitted) in only 8 clocks rather than clocking out 8 bits to send then clocking in 8 bits to
receive. Of course, in some cases the data clocked out or in is “dummy” data, meaning
when you write data and you are not expecting a result. In other words, the data you clock
in is garbage and you can throw it away. Likewise when an SPI read is performed, typically
you place a $00 or $FF in the transmit buffer as dummy data since something has to be
sent and it might as well be predictable.

Sending bytes with SPI is similar to the serial RS-232 protocol: place a bit of information on
the transmit line, then strobe the clock line (of course RS-232 has no clock). Concurrently,
read the receive line since data is being transmitted in both directions.

This is simple enough, but SPI protocol has some very specific details regarding when
signals should be read and written relating to the rising or falling edge of the clock, as well
as the polarity of the clock signal. This way there is no confusion about edge, level, or phase
of the signals. These various modes of operation are logically referred to as the “SPI mode”
and must be agreed upon by the master and slave before communication can begin.

Interfacing the Propeller to External SRAM with SPI v1.0 3 of 25

Parallax Semiconductor AN012

The SPI modes are numerically listed in Table 1 below for reference.

Table 1: SPI Clocking Modes

Mode# CPOL (Clock Polarity) CPHA (Clock Phase)

0 0 0
1 0 1
2 1 0
3 1 1

Mode Descriptions

 Mode 0 — The clock is active when HIGH. Data is read on the rising edge of the
clock. Data is written on the falling edge of the clock (default mode for most SPI
applications and chips).

 Mode 1 — The clock is active when HIGH. Data is read on the falling edge of the
clock. Data is written on the rising edge of the clock.

 Mode 2 — The clock is active when LOW. Data is read on the rising edge of the
clock. Data is written on the falling edge of the clock.

 Mode 3 — The clock is active when LOW. Data is read on the falling edge of the
clock. Data is written on the rising edge of the clock.

Note that most SPI slaves default to mode 0, so typically this mode is what is used to
initiate communications with a SPI device.

Figure 4(a): SPI Timing Diagrams for Clock Phase Polarity (CPHA=0)

Interfacing the Propeller to External SRAM with SPI v1.0 4 of 25

Parallax Semiconductor AN012

Figure 4(b): SPI Timing Diagrams for Clock Phase Polarity (CPHA=1)

Basic SPI Communications Steps

Figure 4(a) and (b) depict the timing diagrams for all variants of clock polarity (CPOL) and
clock phase (CPHA). It’s necessary to adhere to these timing constraints during
communications. In most cases, use Mode 0 since it’s the default that most SPI devices
boot with.

 The Propeller uses software to implement peripherals virtually. An SPI driver for a
dedicated cog may be written in Spin code or Propeller Assembly to send and receive SPI
data. This application notes opts for simple Spin, but later you might want to port to
assembly language. No matter how you implement the SPI driver, the process is very
straightforward. First, select a set of I/O pins on the Propeller and assign them the function
of MOSI (master out slave in), MISO (master in slave out), SCLK (clock signal), and CS
(chip select). This is accomplished with the code shown below (from the driver developed in
this application note):

PUB SPI_Init
{{
DESCRIPTION: Initializes the SPI IO's, counter, and mux, selects channel 0 and returns.

PARMS: none.
RETURNS: nothing.
}}
 ' set up SPI lines
 OUTA[SPI_MOSI] := 0 ' set to LOW
 OUTA[SPI_SCK] := 0 ' set to LOW
 OUTA[SPI_CS] := 1 ' set to HIGH (de-assert)

 DIRA[SPI_MOSI] := 1 ' set to output
 DIRA[SPI_MISO] := 0 ' set to input
 DIRA[SPI_SCK] := 1 ' set to output
 DIRA[SPI_CS] := 1 ' set to output

' end SPI_Init

Interfacing the Propeller to External SRAM with SPI v1.0 5 of 25

Parallax Semiconductor AN012

The SPI pin constants are defined in the driver’s CON section and assigned to appropriate
pins on your particular Propeller development board. For example, on the Propeller C3
development board[2], something like this would work:

 ' SPI pins (convenient free I/Os' on a standard Prop C3 platform)
 SPI_CS = 3 ' SPI chip select (active low)
 SPI_SCK = 0 ' SPI clock from master to all slaves
 SPI_MOSI = 1 ' SPI master out serial in to slave
 SPI_MISO = 2 ' SPI master in serial out from slave

Once the I/O pins are selected and initialized a single method is required to send and
receive bytes over the SPI bus. However, since this single method is written in Spin and
must be very fast, it’s worth the effort to optimize it and unroll the main loop. Take a look
below for the code listing.

PUB SPI_Write_Read(num_bits, data_out, bit_mask) | data_in, num_bits_minus_1
{{
DESCRIPTION: This method writes and reads SPI data a bit at a time (SPI is a circular buffer
protocol), the data is in MSB to LSB format and up to 32-bits can be transmitted and
received, the final result is bit masked by bit_mask

PARMS:

num_bits : number of bits to transmit from data_out
data_out : source of data to transmit
bit_mask : final result of SPI transmission is masked with this to grab the
 relevant least significant bits

RETURNS: data retrieved from SPI transmission

}}
 ' clear result
 data_in := 0
 num_bits_minus_1 := num_bits-1 ' optimization pre-compute this since compiler
 ' will continually evaluate any constant math

 ' optimize code for 8 bit case by unrolling loop, if other bit lengths occur
 ' frequently unroll as well
 if (num_bits == 8)

 ' begin 8-bit case --
 ' now read the bits in/out

 ' bit 0
 OUTA[SPI_SCK] := 0 ' drop clock
 OUTA[SPI_MOSI] := (data_out >> 7) ' place next bit on MOSI
 data_in := (data_in << 1) + INA[SPI_MISO] ' now read next bit from MISO
 OUTA[SPI_SCK] := 1 ' raise clock

 ' bit 1
 OUTA[SPI_SCK] := 0 ' drop clock
 OUTA[SPI_MOSI] := (data_out >> 6) ' place next bit on MOSI
 data_in := (data_in << 1) + INA[SPI_MISO] ' now read next bit from MISO
 OUTA[SPI_SCK] := 1 ' raise clock

 ' bit 2
 OUTA[SPI_SCK] := 0 ' drop clock
 OUTA[SPI_MOSI] := (data_out >> 5) ' place next bit on MOSI
 data_in := (data_in << 1) + INA[SPI_MISO] ' now read next bit from MISO
 OUTA[SPI_SCK] := 1 ' raise clock

Interfacing the Propeller to External SRAM with SPI v1.0 6 of 25

Parallax Semiconductor AN012

 ' bit 3
 OUTA[SPI_SCK] := 0 ' drop clock
 OUTA[SPI_MOSI] := (data_out >> 4) ' place next bit on MOSI
 data_in := (data_in << 1) + INA[SPI_MISO] ' now read next bit from MISO
 OUTA[SPI_SCK] := 1 ' raise clock

 ' bit 4
 OUTA[SPI_SCK] := 0 ' drop clock
 OUTA[SPI_MOSI] := (data_out >> 3) ' place next bit on MOSI
 data_in := (data_in << 1) + INA[SPI_MISO] ' now read next bit from MISO
 OUTA[SPI_SCK] := 1 ' raise clock

 ' bit 5
 OUTA[SPI_SCK] := 0 ' drop clock
 OUTA[SPI_MOSI] := (data_out >> 2) ' place next bit on MOSI
 data_in := (data_in << 1) + INA[SPI_MISO] ' now read next bit from MISO
 OUTA[SPI_SCK] := 1 ' raise clock

 ' bit 6
 OUTA[SPI_SCK] := 0 ' drop clock
 OUTA[SPI_MOSI] := (data_out >> 1) ' place next bit on MOSI
 data_in := (data_in << 1) + INA[SPI_MISO] ' now read next bit from MISO
 OUTA[SPI_SCK] := 1 ' raise clock

 ' bit 7
 OUTA[SPI_SCK] := 0 ' drop clock
 OUTA[SPI_MOSI] := data_out ' place next bit on MOSI
 data_in := (data_in << 1) + INA[SPI_MISO] ' now read next bit from MISO
 OUTA[SPI_SCK] := 1 ' raise clock

 ' end 8-bit case --

 else ' general n bit case

 ' now read the bits in/out
 repeat num_bits
 ' drop clock
 OUTA[SPI_SCK] := 0

 ' place next bit on MOSI
 ' optimization, no need for "& $01"
 OUTA[SPI_MOSI] := ((data_out >> (num_bits_minus_1--)))
 ' now read next bit from MISO
 data_in := (data_in << 1) + INA[SPI_MISO]

 ' raise clock
 OUTA[SPI_SCK] := 1

 ' set clock and MOSI to LOW on exit
 OUTA[SPI_MOSI] := 0
 OUTA[SPI_SCK] := 0

 ' at this point, the data has been written and read, return result
 return (data_in & bit_mask)

' end SPI_Write_Read

SPI_Write_Read is a great example of optimization in the Spin language. Here, the main
loop is unrolled for the “number of bits equals 8” case. The problem with all loops is that the
conditional, increment, and repeat code actually takes up some time. When trying to
squeeze every microsecond/millisecond of performance out of Spin, those computations

Interfacing the Propeller to External SRAM with SPI v1.0 7 of 25

Parallax Semiconductor AN012

aren’t acceptable. Thus, an optimization technique is used here called “loop unrolling” which
unrolls a loop and manually performs each iteration.

In this case, a good 20% speed increase was realized. Additionally, math simplification and
experimentation with Spin operations for the bit operations were performed to make it even
faster. Of course, in Propeller Assembly language, we wouldn’t have to be this aggressive,
but since the SRAM API including the SPI code above is all written in Spin, its pays to
optimize.

Optimization aside, the method is very simple. All it does is set the clock line LOW, then
place a bit on the SPI MOSI output line, read the MISO input line, assert the clock, and bit-
shift the output and input bytes until the operation is complete. If the caller is requesting an
8-bit write/read operation then the optimized unrolled loop is used, otherwise, a slower
repeat loop is used for 16-, 24-, and 32-bit operations.

You might wonder, why not optimize the 16-, 24-, and 32-bit variants as well? The reason is
they happen so rarely that they account for very little of the transfers (usually address
operations and setup), so optimizing them doesn’t pay off as much. However, optimizing
the 24-bit variant and unrolling it can’t hurt, and if you want some more speed then you
should perform this further optimization since it does help for single-byte transfers.
However, later we will see a cache implementation which really speeds things up.

Interfacing to the Microchip 23K256 32 KB SRAM
The 23K256 SRAM has a rather robust set of functions which is outlined in its data sheet[3].
The SRAM is non-trivial; to expose all its functionality and speed read the data sheet
(23K256_SRAM.pdf) in the included ZIP file.

This application note develops a simple API that allows you to read, write, and fill the SRAM
with data. These methods can access the 32 KB of space and immediately put it to use.
However, the driver methods are written in Spin, so if you want to speed them up, you will
have to recode to Propeller Assembly (along with the SPI driver itself).

Device and Hardware Setup

The 23K256, like most SPI devices only requires 4 signals; MOSI, MISO, CLK, and CS.
Figure 5 is an illustration of the pinout of the 23K256.

Figure 5: Signal Pinout for the 23K256 32K SPI SRAM

Interfacing the Propeller to External SRAM with SPI v1.0 8 of 25

Parallax Semiconductor AN012

Referring to Figure 5, pin 1 is the chip select line (active LOW), pin 2 is the serial out line
which maps to MISO, pin 5 is the serial in line which maps to MOSI, and finally pin 6 is the
clock line. Vcc and Vss are power and ground respectively and the 23K256 can tolerate from
2.7-3.6V with the I/O being compatible with 5V TTL/CMOS with 100 ohm series resistors.
Make sure to power the chip and place a 0.01–0.1 µF ceramic capacitor close to the Vcc pin
for noise and bypass.

The remaining signal line on pin 3 is a no-connect, but HOLDn on pin 7 deserves a moment
of discussion. The HOLDn line when asserted LOW basically takes the device off the SPI bus
and all input signals (clock and serial in) are ignored. Furthermore, serial out is placed in a
high impedance state. Thus, HOLDn is a great way to take a device off a shared bus for a
moment and then place it back on the bus right where it left off. The chip select line CSn is
a little different; when this is de-asserted, the device is removed from the bus as well, but
its state is lost and if you were in the middle of an operation it would be lost. In our case,
HOLDn is tied HIGH and not used.

To interface one or more 23K256 devices to the Propeller chip is easy: just select 4 I/O
signals that are free and not connected or loaded to any other devices, and hook the
Propeller I/O pins directly to pins 1, 2, 5, and 6. (Remember SPI is high speed, so the signal
lines have to be clear of other devices hanging on them).

If you re-write the driver in Propeller Assembly or push the SPI bus past the 10 MHz mark,
consider putting some series 33 Ω to 50 Ω dampening resistors inline with the SPI bus
signals to reduce noise and transmission line effects on the signals themselves. But, for the
Spin driver, just hook some wires up from the Propeller to the 23K256 and it should work
fine. Keep the wires short and direct; if possible run them flat against your prototype board.

Software Driver Considerations

The SRAM data sheet gives you all the architectural details of the SRAM itself, but from our
perspective all we are interested in is reading, writing, and understanding devices the three
modes of operation:

 Byte Mode — A single byte is read or written.
 Page Mode — A page of 32 bytes is read or written.
 Sequential Mode — Any number of bytes is read or written.

Most SPI devices, whether they be SRAM, FLASH or other array-based memory, have a
number of optimized “access” modes to decrease the amount of SPI traffic to read and write
data. For example, to write a single byte to the SRAM, you first need to address the byte (2
bytes) and then write the byte (1 byte) and let’s not forget the command itself (1 byte).
Therefore, to write a single random access byte is 4 bytes of information! That’s a huge
waste. But, if you need to randomly access the SRAM, that’s what to expect.

What if you want to write a continuous stream of bytes? Maybe you have a 1024-byte buffer
in Propeller hub RAM that you want to copy to the SPI SRAM. Well, that’s where the
sequential mode comes in. In this mode, you write the instruction for sequential access,
then the address, then you write byte after byte, so the overhead to write 1024 bytes is
nearly zero and the real work are continuous 8-bit transfers (this is why the 8-bit transfer
operation was optimized in the SPI API).

Therefore, a complete API would support these modes and would either allow user selection
via function names or parameters or maybe automatic mode selection based on the data
sent, size, etc. Some features to think about for future drivers. For this application note, the

Interfacing the Propeller to External SRAM with SPI v1.0 9 of 25

Parallax Semiconductor AN012

byte and sequential modes are supported in the API. The page mode is exotic and not
really useful.

The interesting thing about the Microchip SRAM is their simplicity in commands. They only
have 4 commands as shown in Table 2 below.

Table 2: SRAM Commands

Instruction Name Value Description

READ 0000 0011b Read data from memory array beginning at selected address

WRITE 0000 0011b Write data to memory array beginning at selected address

RDSR 0000 0101b Read STATUS register

WRSR 0000 0001b Write STATUS register

Note that there is no mention of the 3 modes of operation (byte, page, sequential). These
are set and selected initially by writing the status register and then the chip remains in that
mode until you change it—refer to the data sheet to learn more.

Figure 6: The SRAM Driver Components

Interfacing the Propeller to External SRAM with SPI v1.0 10 of 25

Parallax Semiconductor AN012

Understanding the SRAM Driver Object and API
The SRAM driver object is composed of three major components as shown in Figure 6:

 The SPI Driver
 The SRAM System Interface
 The Local Memory Cache Sub-System

The SPI driver as outlined before uses standard SPI protocol to communicate with any
external SPI device. You simply need to connect the 23K256 SPI SRAM to your Propeller
board’s I/O pins (make changes in the CON section of your program to reflect the final I/O
assignment) and you are ready to use the SPI function directly if you wish. However, if you
are using the SRAM object as intended then the SPI API can be ignored for the most part
since the SRAM system talks directly to the SPI methods itself. Nonetheless, if you want to
use the SPI methods to talk SPI protocol to some other device you are free to do so and it
won’t cause any issues with the SRAM methods or state.

The SRAM system itself is composed of a number of methods to read, write, fill and initialize
the SRAM. In most cases, you will only need to access the SRAM methods (along with the
cache methods) and you won’t make calls to the SPI functions directly.

Finally, the cache sub-system implements a local hub memory cache that caches a single
page of SRAM in block sizes that are user selectable in the driver. Like any cache, this
speeds up writing and reading access times overall for the driver.

The SRAM driver object integrates all these components into a single object named
SRAM_driver_23K256_v010.spin (located in the ZIP) Let’s briefly review the API methods
and then they will all be exercised with a demo that brings it all together.

For more detail about the parameters, side effects and functionality of the API methods,
please review the driver source; it’s well documented and goes into heavy detail on each
method.

SPI Methods

There are only 3 SPI methods in the SRAM driver object:

PUB SPI_Init — This method initializes the SPI I/O pins and sets their direction and state.

This is called internally by the SRAM Init method, so you shouldn’t need to call this.

PUB SPI_Reset_Pins(pSPI_CS, pSPI_SCK, pSPI_MOSI, pSPI_MISO) — This method lets

you change which pins are connected to your SPI device. Typically, this method is
called after a call to the main Init method and you want to change I/O pins to talk to
another SPI device (maybe another SRAM).

PUB SPI_Write_Read(num_bits, data_out, bit_mask) — This method performs the

actual bit- banging to send and receive SPI packets. You can send/receive any number
of bits, but in most cases you will work with 8-, 16-, 24-, or 32-bit size data. Again,
you typically will not need to call this method yourself if you are happy wit the SRAM
access methods.

Interfacing the Propeller to External SRAM with SPI v1.0 11 of 25

Parallax Semiconductor AN012

SRAM Access Methods

This is the primary API interface for communicating with the external Microchip 23K256 32
KB SPI memory. Normally, your application will make an initial call to the Init method with
a set of I/O pins to assign to chip select, clock, serial out, and serial in. The Init method
then initializes the SPI driver itself as well as starts up the 23K256 and puts it into
sequential access mode. Finally, the method initializes the cache sub-system and puts it into
a known state with an empty cache.

PUB Init(pSPI_CS, pSPI_SCK, pSPI_MOSI, pSPI_MISO) — This method initializes the

whole SRAM interface, SPI driver, and cache.

PUB SRAM_Init(mode) — This method is internal and sends commands to the SRAM to

place it in the requested access mode.

PUB SRAM_Chip_Select — This method asserts the chip select CSn line on the SRAM.

PUB SRAM_Chip_Deselect — This method de-asserts the chip select CSn line on the SRAM.

PUB SRAM_Write(addr, num_bytes, src_buffer_ptr) — This method writes any number

of bytes from a buffer to the SRAM.

PUB SRAM_Fill(addr, num_bytes, value) — This method fills a region of the SRAM with a

specific value.

PUB SRAM_Read(addr, num_bytes, dest_buffer_ptr) — This method reads any number

of bytes from the SRAM and stores them in a buffer.

PUB SRAMR(addr) — This method reads a single byte from the SRAM.

PUB SRAMW(addr, data) — This method writes a single byte to the SRAM.

Figure 7: Cache Architecture and Detail

Interfacing the Propeller to External SRAM with SPI v1.0 12 of 25

Parallax Semiconductor AN012

Cache Support Methods

Referring to Figure 7, the SRAM cache is implemented as local Propeller hub memory of any
power-of-2-fixed-size page (2…128, 256, 512 bytes, etc.). Then, when a byte is read from
the SRAM, instead of reading a single byte, the entire page is read in from the SRAM. If any
byte with an address located in the cached page is read or written, then that access is
made locally in the cache and the external SRAM is not accessed. This is the where the
speed gain is realized in the cache; as long as memory accesses remain in the cache page,
the external memory isn’t accessed.

However, at some point the application will require an address that is not in the cache. In
this case a new page must be loaded in and the old page destroyed. This is called
“thrashing” the cache. This is where the concept of “dirty” and “clean” cache pages comes
into play.

A cache page is said to be “clean” if the page has only been read. However, if writes have
occurred to the cached data, the cache becomes “dirty” and those changes must be written
out to the external SRAM to synchronize it to the changes made by the application program.
Thus, dirty cache pages must be written back out to the SRAM when a new cache page is
requested by the user via a memory address that is not currently cached. Now, let’s review
the cache methods and follow up with an example.

PUB SRAM_Cache_Init — This method initializes the cache. This is called internally by the

main Init method.

PUB SRAM_Cache_Flush — This method forces a “flush” of the cache. Flushing the cache

refers to writing dirty pages out and synchronizing them.

PUB CacheR(addr) — This method performs a read from the external SRAM with cache

support. Send the address you want to read from and the cache engine does the rest
for you all behind the scenes. Note the shortened name to make “array like” access
more natural and save typing.

PUB CacheW(addr, data) — This method performs a write to the external SRAM with cache

support. Send the address and data you want to write to the external SRAM and the
cache engine does the rest for you all behind the scenes. But, be aware that nothing
will be written to SRAM until a cache page thrash occurs or you manually flush the
cache. Note the shortened name to make “array like” access more natural and save
typing. Also, this method returns the value data itself, so you can use this write
method in expressions.

Example Cache Operation and State Tracking

Let’s step through a hypothetical example of the cache functioning. First, configure the
cache setup in the driver object file’s CON section; here’s the code of interest:

' cache constants, YOU must set these to adjust the cache size to optimize your
' application usually 128, 256, 512 will be optimal, but you might need a really
' small or really large cache to see performance improvement. You set the CACHE_SIZE
' then compute CACHE_SIZEL2

 CACHE_SIZE = 512 ' size of cache in bytes, must be power of 2, you set this
 CACHE_SIZEL2 = 9 ' size of cache log2 of cache_size, you set this,
 ' so log2(512) = 9, log2(256)=8, log2(128)=7, etc.
 CACHE_MASK = CACHE_SIZE - 1 ' bit mask

Interfacing the Propeller to External SRAM with SPI v1.0 13 of 25

Parallax Semiconductor AN012

By default the cache size is set to 512 bytes. If you want to change it, then change the
constant CACHE_SIZE; additionally you must compute the log2 CACHE_SIZE and assign it to
CACHE_SIZEL2. With the cache size of 512 bytes, that means if we use the cache read/write
functions, the moment a read operation is performed, the page that contains the byte will
be cached and 512 bytes read into the Propellers hub RAM. With that in mind, let’s step
through the example cache use.

State 1: The system just started, cache is empty.

State 2: Using the cache methods memory location 756 is read from the external SRAM.

The cache is empty; therefore, a page must be brought in. Since each page is 512
bytes, memory location 756 is located on the second page or page 1 if we are
counting 0-based (which we are). Page 1 is cached into the local cache memory
(which is nothing more than a byte buffer in the Propeller’s hub RAM). The cache
state is updated as page 1 loaded and clean.

State 3: Calls are made using the cache methods to read addresses 600-1000 from the

external SRAM. Since the cache holds page 1 (addresses 512 to 1023) all of these
reads pass straight through to the local hub RAM and no external SPI traffic is
needed, thus these read operations run at near-full Spin speed.

State 4: Calls are made to write memory locations 800-900. These locations are once

again located in the cache since all addresses 512 to 1023 are cached with page
1. Again, no external SPI traffic is generated since the cache has all the data.
However, these write operations dirty the cache and the dirty flag is set.

State 5: A call is made to read memory location 56. This is in page 0 of the external SRAM.

A cache thrash is generated and the cache system needs to load a new cache
page to access this memory location. However, before the current page can be
discarded and a new page loaded (page 0), the cache manager notes that the
current cache page 0 is dirty, and thus writes the current page back out to the
cache. This synchronizes the external SRAM once again with what has been going
on locally. Now, the cache manager is free to load page 0 into the cache, set the
state flag to clean, and return the value of memory location 56.

When writing is performed, we only take a hit when a new cache page is required. So, for
an application where the external SRAM is initially written with a set of data and then used
as a read-only device, performance is instantaneous. On the other hand, if byte addresses
are generated that are beyond cache page boundaries every cycle, coupled with write
operations, then the cache actually makes the system slower. It’s up to you to benchmark
performance and decide of the cache helps, and determine the optimal cache page size for
maximum performance. Cache sizes of 64 and 512 are probably optimal for the two
extreme cases of far and near address histograms.

Hands-on Demonstration Application
The goal of the final demo is to show off the entire SRAM API and give you a good working
template to develop your own applications. The demo is shown in Figure 8 below running on
the Parallax Serial Terminal (PST)[4]. The demo is completely serial UART based, thus you
can get it to work with little more than a Propeller chip with a USB to serial programming
interface, power, and of course the external SPI RAM hooked up properly. The demo is
menu driven and each menu item illustrates a different SRAM API operation, so you can see
them all in action and experiment in real-time.

Interfacing the Propeller to External SRAM with SPI v1.0 14 of 25

Parallax Semiconductor AN012

Figure 8: The SRAM Demo Program in Action

NOTE: The demo runs at 38,400 baud with N81 for serial settings.

To compile and run the demo, use the top-level application SRAM_menu_demo_010.spin
located in this note’s ZIP file. The demo includes the main SRAM driver as well as a VGA
driver and utility object with some useful text and parsing functions that might come in
handy. Figure 9 shows the file tree.

Figure 9: File Tree for the SRAM_menu_demo_010

Connecting the 23K256 SPI SRAM

The first step to getting the demo up and running is to connect a 23K256 SPI SRAM to your
Propeller development board. Referring to back to Figure 5, connect the 4 signals from your

Interfacing the Propeller to External SRAM with SPI v1.0 15 of 25

Parallax Semiconductor AN012

particular Propeller board’s available I/Os to the clock, serial in, serial out, and chip select of
the 23K256. Additionally, hook up 3.3 V to Vcc and ground to Vss (along with a 0.1 µF
bypass capacitor). Finally, tie HOLDn HIGH (3.3 V). Figure 10 below is a photograph of a
Propeller C3 platform[2] with a solderless breadboard holding a DIP version of the 23K256.

Figure 10: The 23K256 Connected to a Propeller C3 for Experimentation

NOTE: The C3 already has a pair of 23K256’s onboard, but doesn’t mean we can’t connect
more SPI devices to the external expansion headers.

The code excerpt below from the driver SRAM_driver_23K256_v010.spin shows the circuit
diagram as well.

{
 Circuit Schematic - To use this driver, simply connect a Microchip 23K256 32K SPI
 SRAM up to your Propeller platform as shown below:

 These signals from the Prop I/O pins map to the SPI interface.

 SPI_CS
 SPI_SCK
 SPI_MOSI
 SPI_MISO 3.3V (VCC)

 Microchip 23K256 32K SRAM ┣─────┐
 ┌──────────┐ │ 0.1uF (bypass)
 SPI_CS ──────── CSn│1 8│Vcc ───────┫
 │ │ │ GND
 SPI_MISO ────── SO │2 7│HOLDn ─────┘
 │ │
 NC │3 6│SCK ─────── SPI_SCK
 │ │
 ┌─── Vss│4 5│SI ──────── SPI_MOSI
 │ └──────────┘
 │

 GND

}

Interfacing the Propeller to External SRAM with SPI v1.0 16 of 25

Parallax Semiconductor AN012

Once you have the circuit hooked up, set the proper I/O pins in the top-level application
SRAM_menu_demo_010.spin to reflect your hardware setup. These constants are located at
the top of the CON section and set as follows; change these to the respective I/O pins you
will be using.

 ' SPI pins
 SPI_CS = 3 ' SPI chip select (active low)
 SPI_SCK = 0 ' SPI clock from master to all slaves
 SPI_MOSI = 1 ' SPI master out serial in to slave
 SPI_MISO = 2 ' SPI master in serial out from slave

Running the Demo

Once you have connected your 23K256 to your Propeller board and updated the I/O pins in
SRAM_menu_demo_010.spin, it’s time to exercise the SRAM device and see it perform.
Compile and download the program to your Propeller board. Then, launch the Propeller
Serial Terminal (PST), set it to 38400 baud, N81, set the COM port to the correct value and
then press <Enable> on the PST.

And nothing should happen. The reason why nothing should happen is that the Propeller
already booted a long time ago and printed out the ASCII menu, thus, you need to hit the
reset button on your Propeller board to get it to reboot. Now, you should see the menu as
depicted in Figure 8.

TIP: Both your Propeller board and the PST use the same serial connection. Remember to
first disable the PST, then compile and download to your Propeller board, re-enable the PST
and hit reset on your Propeller board to get the menu up, and then you can proceed.

The demo menu program is meant to serve as a template and example platform to see each
SRAM function in action. The program relies on the SRAM driver itself, a serial driver, and
the text, character parsing object spoke of before. Here’s the OBJ section for reference:

OBJ

 ' drivers and objects required for the demo
 SERIAL : "FullDuplexserial_drv_014.spin" ' full duplex serial driver
 SRAM : "SRAM_driver_23K256_v010.spin" ' 32K Microchip 23K256 SRAM driver
 STR : "string_util_driver_v010.spin" ' helpful string and character
 ' processing methods

The STR object is useful—take a look at the source. It has a lot of character and text
processing methods based on common C functions, which are very helpful when writing
text-based applications.

Moving on, here’s the Main method where the program begins:

PUB Main : status

 ' give system time to initialize...
 STR.Delay_US(1*1_000_000)

 ' initialize serial driver (only works if nothing else is on serial port)
 SERIAL.start(31, 30, %0000, 38_400) ' receive pin, transmit pin, baud rate

 ' initialize SPI SRAM driver and save pointer to cache for direct access (optional)
 g_cache_ptr := SRAM.Init(SPI_CS, SPI_SCK, SPI_MOSI, SPI_MISO)

Interfacing the Propeller to External SRAM with SPI v1.0 17 of 25

Parallax Semiconductor AN012

 ' enter infinite test loop
 repeat
 ' clear screen
 SERIAL.tx($00)

 ' call the test
 SRAM_Test

' end Main

The code starts with a short delay to let the Propeller board settle and the driver(s) start up.
Then the call to the SRAM driver’s Init method is made. This is all you need to do to use
the SRAM driver. The call takes the pin numbers assigned to chip select, clock, serial out,
and serial and that’s it. The method initializes the SRAM driver and SPI I/O interface, then
finally starts the cache up. The method returns a pointer to the cache in hub RAM. This is
just a convenience in case you need direct access to the byte buffer for some reason.
Otherwise, you can ignore the return value.

Next, the screen is cleared by sending a $00 (ASCII VT-100 clear screen) to the Parallax
Serial Terminal. Then a call to SRAM_Test begins the demo and displays the menu. Since we
are going to discuss each menu item and what it does, take a look at the code below. Each
menu item is handled by a different case block (highlighted below):

PUB SRAM_Test

 '///
 ' SRAM TEST SUITE //
 ' Each case in the switch statement illustrates an API method(s), use as an
 ' example of how to use the API methods in your own applications to access
 ' the external SPI SRAM.
 '///

 repeat
 ' draw menu
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)
 SERIAL.txstring(string ("External SPI SRAM Memory Test Menu V1.0 | (c) Parallax 2011"))
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("1. Read Status Register."))
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("2. Write data in format [start,value,numbytes]."))
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("3. Read data in format [start,numbytes]."))
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("4. Read byte from cache."))
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("5. Write byte to cache."))

Interfacing the Propeller to External SRAM with SPI v1.0 18 of 25

Parallax Semiconductor AN012

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("6. Flush the cache to SRAM."))
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("7. Enter ASCII text directly into SRAM."))
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("8. Print SRAM memory out in ASCII format."))
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("Selection?"))

 ' get string from user
 Get_String_Serial(@g_sbuffer, 4)

 ' convert to integer
 g_key := STR.atoi2(@g_sbuffer, 4)

 ' what is user requesting?
 case g_key
 1: ' READ STATUS REGISTER --
 SRAM.SRAM_Chip_Select
 g_temp1 := SRAM.SPI_Write_Read(16, %00000101_00000000, $FF)
 SRAM.SRAM_Chip_Deselect

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)
 SERIAL.txstring(string ("Status Register = "))
 SERIAL.dec(g_temp1)

 2: ' WRITE DATA ---
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("Start address?"))

 ' get string from user
 Get_String_Serial(@g_sbuffer, 8)

 ' convert to integer
 g_temp1 := STR.atoi2(@g_sbuffer, 8)

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("Value to write?"))

 ' get string from user
 Get_String_Serial(@g_sbuffer, 8)

 ' convert to integer
 g_temp2 := STR.atoi2(@g_sbuffer, 8)

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

Interfacing the Propeller to External SRAM with SPI v1.0 19 of 25

Parallax Semiconductor AN012

 SERIAL.txstring(string ("Number of bytes to write?"))

 ' get string from user
 Get_String_Serial(@g_sbuffer, 8)

 ' convert to integer
 g_temp3 := STR.atoi2(@g_sbuffer, 8)

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("Writing Data..."))

 ' write the bytes
 SRAM.SRAM_Fill(g_temp1, g_temp3, g_temp2)

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.dec (g_temp3)
 SERIAL.txstring(string (" Bytes written."))

 3: ' READ DATA --

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("Start address?"))

 ' get string from user
 Get_String_Serial(@g_sbuffer, 8)

 ' convert to integer
 g_temp1 := STR.atoi2(@g_sbuffer, 8)

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)
 SERIAL.txstring(string ("Number of bytes to read?"))

 ' get string from user
 Get_String_Serial(@g_sbuffer, 8)

 ' convert to integer
 g_temp3 := STR.atoi2(@g_sbuffer, 8)

 ' print buffer to screen
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)
 SERIAL.txstring(string ("Bytes read:"))

 repeat g_index from g_temp1 to (g_temp1 + g_temp3 - 1)
 ' print starting address to left every 8 bytes
 if ((g_index // 16) == 0)
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.hex (g_index, 6)
 SERIAL.txstring(string (":"))

 ' read a single byte at a time
 SRAM.SRAM_Read(g_index, 1, @g_sbuffer[0])

 ' print byte
 SERIAL.hex (g_sbuffer[0], 2)

Interfacing the Propeller to External SRAM with SPI v1.0 20 of 25

Parallax Semiconductor AN012

 SERIAL.tx(",")

 4: ' READ BYTE FROM CACHE --

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("Start address?"))

 ' get string from user
 Get_String_Serial(@g_sbuffer, 8)

 ' convert to integer
 g_temp1 := STR.atoi2(@g_sbuffer, 8)

 ' print buffer to screen
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("Data = $"))

 ' read a single byte and print in hex format
 SERIAL.hex(SRAM.CacheR(g_temp1), 2)

 5: ' WRITE BYTE TO CACHE ---
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("Start address?"))

 ' get string from user
 Get_String_Serial(@g_sbuffer, 8)

 ' convert to integer
 g_temp1 := STR.atoi2(@g_sbuffer, 8)

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)
 SERIAL.txstring(string ("Value to write?"))

 ' get string from user
 Get_String_Serial(@g_sbuffer, 8)

 ' convert to integer
 g_temp2 := STR.atoi2(@g_sbuffer, 8)

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("Writing Data to Cache..."))

 ' write the byte
 SRAM.CacheW(g_temp1, g_temp2)

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string (" Bytes written."))

 6: ' FLUSH THE CACHE ---

 SRAM.SRAM_Cache_Flush
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

Interfacing the Propeller to External SRAM with SPI v1.0 21 of 25

Parallax Semiconductor AN012

 SERIAL.txstring(string ("Cache Flushed."))

 7: ' ENTER ASCII TEXT DIRECTLY INTO SRAM -------------------------

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("Type Text, CTRL-Z to Save"))

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)
 SERIAL.txstring(string ("TYPE>"))

 ' counts number of bytes written
 g_data2 := 0

 repeat

 ' get next byte from serial port
 if ((g_data := SERIAL.rx) == CTRL_Z)
 ' user is done typing
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 SERIAL.txstring(string ("Number of bytes written to SRAM = "))
 SERIAL.dec(g_data2)

 ' return to main menu
 quit
 else
 ' print character to serial terminal
 SERIAL.tx(g_data)

 ' store in memory
 SRAM.SRAMW(g_data2++, g_data)

 8: ' PRINT ASCII TEXT FROM SRAM TO SCREEN ------------------------

 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)
 SERIAL.txstring(string ("Number of bytes to ASCII dump from SRAM?"))

 ' get string from user
 Get_String_Serial(@g_sbuffer, 8)

 ' convert to integer
 g_temp1 := STR.atoi2(@g_sbuffer, 8)

 ' print buffer to screen
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)
 SERIAL.txstring(string ("ASCII SRAM Dump:"))
 SERIAL.tx(ASCII_CR)
 SERIAL.tx(ASCII_LF)

 ' iterate thru and read and print each value as an ASCII printable
 repeat g_index from 0 to g_temp1-1
 ' read and print byte
 SERIAL.tx (SRAM.SRAMR(g_index))

 ' return to caller
 Other: return
 ' end SRAM_Test

Interfacing the Propeller to External SRAM with SPI v1.0 22 of 25

Parallax Semiconductor AN012

Take some time to review each functional block in the case statement. 90% of the code is
for display and character entry; the actual SRAM API calls are 1-2 lines usually. But, since
this is a user text-based application, a lot of code is needed to get user input, parse, print,
etc.

text entry parser method Get_String_Serial is local to the demo, located at the end. This
method has a little built-in single line editor that can handle backspace and delete, a very
useful feature to add to your library of Spin methods.

The menu program works as follows: the menu is printed to the serial terminal, then the
Get_String_Serial method is used to get the user’s selection. This string is converted to
an integer and then the appropriate case is executed based on the value 1..8. In each case
block the relevant SRAM method is called after getting the needed parameters from the
user. Let’s look at the complete list and detail what each does.

Menu Items

1. Read Status Register
2. Write data in format [start,value,numbytes]
3. Read data in format [start,numbytes]
4. Read byte from cache
5. Write byte to cache
6. Flush the cache to SRAM
7. Enter ASCII text directly into SRAM
8. Print SRAM memory out in ASCII format

Now, depending on which menu item is called, you will need to enter one or more numeric
parameters for the function request. The parser can actually understand decimal, hex ($),
and binary (%) formats. So, if you want to enter a number such as 255, you can enter
“255”, or “$FF”, or “%11111111”. The parser translates all formats for you with the atoi2
method. Of course, this has nothing to do with SRAM access, but if you are going to write
any text applications then parsing and processing are always welcome. Additionally, if you
make a mistake while entering values, the and <Backspace> keys work on the line
editor. Now, let’s review each menu command.

Menu Commands Explained

Read Status Register — This prints out the status of the 23K256 device. It simply sends
the get status command to the device and returns it with this single line of code:

g_temp1 := SRAM.SPI_Write_Read(16, %00000101_00000000, $FF)

Write data in format [start,value,numbytes] — This command requires 3 parameters:
the starting address to write at in the SRAM (0..32767), the value to write (0...255), and
finally the number of bytes to write. Of course, you can use decimal, hex, or binary
numbers as you see fit. The function performs the write operation with the SRAM_Fill
method:

' write the bytes
SRAM.SRAM_Fill(g_temp1, g_temp3, g_temp2)

Read data in format [start,numbytes] — Similar to the write command, this one
requires a starting address as well as the number of bytes to read. The SRAM_Read method
is used:

Interfacing the Propeller to External SRAM with SPI v1.0 23 of 25

Parallax Semiconductor AN012

' read a single byte at a time
SRAM.SRAM_Read(g_index, 1, @g_sbuffer[0])

Read byte from cache — This function uses the cache management system to read from
the SRAM with the SRAM_CacheR method. The function will ask for the starting address to
read from and then return the data either from the cache or read it from the SRAM if there
is a cache miss.

SRAM.CacheR(g_temp1)

Write byte to cache — Similar to the read cache function above, you must give this one a
starting address as well as the byte to write. The cache is written to, or written through to
the SRAM if there is a cache miss.

' write the byte
SRAM.CacheW(g_temp1, g_temp2)

Flush the cache to SRAM — This function flushes the cache. In other words, it writes the
currently cached SRAM page (if there is one) back to the SRAM.

' flush the cache
SRAM.SRAM_Cache_Flush

These final two menu items allow you to enter text directly into the SRAM via the PST, much
like a screen editor. Simply type whatever you want—you can make edits, add carriage
returns etc. Whatever characters you type (up to 32,3278 of them) are recorded and
written to the SRAM starting from address 0. Then when you print the ASCII text back, the
SRAM is simply read from address 0 and printed as ASCII data to the screen. A poor-man’s
MS Word.

Enter ASCII text directly into SRAM — Type anything you wish, up to 32,768 characters.
When you are finished press <CTRL-Z> to save the text in SRAM. Once saved, the demo
will print out how many bytes you type; remember this number so you can enter it on the
next menu item. There is no particular method call for this; it just uses the standard
SRAM_Write method.

Print out SRAM memory in ASCII format — This prints out the requested number of
bytes from the SRAM in ASCII format. Typically, you will use this menu item function after
the previous function, so you recall what you typed from the SRAM. The function asks you
only how many bytes you want to print out. Again, this relies on no special API function; it
just reads the SRAM with SRAM_Read.

That’s all for the demo. Simply copy and past the setup code into your application, or use
this demo as a template for your own experiments to help integrate external SRAM into
your next product.

Optimization Strategies
Before concluding, let’s take a few moments to discuss optimization strategies to speed up
the external SRAM access. The first obvious optimization is to convert the driver to 100%
Propeller Assembly language. This is surely going to make things faster, but it’s a lot of
work and might not be necessary. A less-aggressive approach would be to try running the
Spin version of the SPI SRAM driver on its own cog. Then with a caching system request

Interfacing the Propeller to External SRAM with SPI v1.0 24 of 25

Parallax Semiconductor AN012

Interfacing the Propeller to External SRAM with SPI v1.0 25 of 25

memory—if it’s in the cache then the memory is immediately available; if not, then the
primary execution thread can request the page be brought into the cache and return later.
This allows the primary thread to continue performing work rather than blocking while a
page is brought into main memory.

However, if constant throughput is required then a Propeller Assembly driver is required.
The best architecture is to integrate the SPI driver and all SRAM functions (including the
cache) into the assembly language driver and then, via shared global memory, use a
message-passing scheme to read and write bytes from and to the SPI SRAM.

If you are coding your application in Spin in the first place, Spin’s maximum execution
velocity will set the pace of your application and dictate how fast you need external memory
access. However, if your application is written in assembly language in the first place and
speed is of utmost concern, then an assembly language version of the SRAM driver with SPI
integrated and a memory mapped shared address space for inter-cog communication is the
way to go.

Summary
This application note has described how to interface an SPI-based external SRAM device to
the Propeller chip. A complete driver and API was developed that supported basic read and
write operations as well as a caching system for high performance—all in Spin. Using the
driver is as easy as including it in the OBJ section of your programs and connecting an 8-
pin DIP IC up to your Propeller board.

Resources
The example code below is available in a zip archive for download from this application
note’s web page: www.parallaxsemiconductor.com/an012

string_util_driver_v010.spin
SRAM_menu_demo_010.spin
SRAM_driver_23K256_v010.spin
FullDuplexSerial_drv_014.spin

References
1. Joint Electron Device Engineering Council
2. Propeller C3, Parallax #32209; www.parallax.com
3. 23K256 SPI SRAM: http://ww1.microchip.com/downloads/en/DeviceDoc/22100E.pdf
4. Parallax Serial Terminal software is available alone or bundled with the Propeller Tool

IDE software: www.parallaxsemiconductor.com/software

Revision History
Version 1.0: original document.

Parallax, Inc., dba Parallax Semiconductor, makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Parallax, Inc., dba Parallax Semiconductor, assume any liability arising out of the application or
use of any product, and specifically disclaims any and all liability, including without limitation consequential or incidental damages
even if Parallax, Inc., dba Parallax Semiconductor, has been advised of the possibility of such damages. Reproduction of this
document in whole or in part is prohibited without the prior written consent of Parallax, Inc., dba Parallax Semiconductor.

Copyright © 2011 Parallax, Inc. dba Parallax Semiconductor. All rights are reserved.
Propeller and Parallax Semiconductor are trademarks of Parallax, Inc.

	Interfacing the Propeller to External SRAM with SPI
	Introduction
	SPI Protocol Primer
	Interfacing to the Microchip 23K256 32 KB SRAM
	Understanding the SRAM Driver Object and API
	Hands-on Demonstration Application
	Optimization Strategies
	Summary
	Resources
	References
	Revision History

