

www.paral laxsemiconductor .com
sa les@paral laxsemiconductor.com
support@paral laxsemiconductor.com
phone: 916 ‐632 ‐4664 • fax:916 ‐624 ‐8003

Communication with a PC Application v1.0 1 of 5

Application Note AN018

Communication with a PC Application
Abstract: Many embedded applications share information with external devices, and the
preferred connection between devices is asynchronous serial communications. The multicore
architecture of the P8X32A enables the designer to create and deploy device-to-device
communications strategies with no impact on the primary application code. In this example
a deployed communications support cog manages data between the main application and
the serial I/O firmware, using VB.NET and the P8X32A QuickStart board.

Introduction
Making communication between the Propeller and the PC virtually transparent to the
designer greatly reduces the effort required to exchange data. The designer can focus on
writing the main code without having to worry about the code handling the communication.
The designer need only assign or read global variables in order to exchange data with
the PC.

Three things are needed for communication between the Propeller chip and a PC:

1. Hardware; in this case a Propeller P8X32A development platform and a Windows PC.

2. Software; in this case a custom Spin object and a custom PC application.

3. Protocol; a format for sending the data between the Propeller and the PC must be
devised.

The recommended hardware connection to the PC should be via the USB or serial interface
used to program the Propeller. This connection provides the most reliable data integrity and
allows for the possibility to reset the Propeller if the need should arise.

The Spin object used to facilitate communication is designed to run as a separate process in
another cog on the Propeller. The activity of this object is transparent to the user program,
and all that is needed to start the object is the following line of code:

 cognew(PC_Comms, @stack)

The first parameter (PC_Comms) is the name of the PRI method we are launching into the
new cog. @stack refers to the declaration for stack space for this method. This method in
turn starts the FullDuplexSerial.spin object which launches into a third cog. The code
running in the PC_Comms cog handles the exchange of data between the
FullDuplexSerial.spin object and two global arrays. The FullDuplexSerial.spin object runs in
a separate cog and handles the bit timing, sending, receiving, and buffering of data between
the Propeller and the PC.

In addition to the single line of code three declarations are necessary:

 Byte datain[16]
 Byte dataout[16]
 Long stack[32]

Parallax Semiconductor AN018

The first line establishes a 16-byte array, datain, used to store incoming data from the PC
application. The second line establishes a 16-byte array, dataout, used to store data we
want to send to the PC application. The third line allocates 32 longs of stack space for the
Spin PC_Comms method launched into another cog. The two 16-byte arrays are global
variables, which means that they are accessible from any public or private method within
the object, including the PC_Comms method launched into another cog.

Communication
The incoming and outgoing arrays hold 16 bytes each; the serial protocol only supports
byte-sized values. Word- and long-sized data must be sent one byte at a time. Likewise,
bit- and nibble-sized data must be encoded into a byte.

With packets of data going back and forth it is important to know where the beginning of
the data array is, therefore a prefix is sent before the packet of data. This header will help
delimit the data packet and ensure that the data bytes are placed into the array in the
proper position.

Packets going from the Propeller to the PC will be prefixed with “!P1” as well as an ASCII 10
(linefeed), while packets going from the PC to the Propeller will be prefixed with “!VB”. The
ASCII 10 (linefeed) is required for the PC due to the way the VB.NET ReadLine works. The
prefix from the PC application also includes an ASCII 10 (linefeed).

To develop a well-written and useful application, first determine which data to display within
the PC application and what control data to send the Propeller object. Once this is done,
decide which array elements, and how many, will be needed to create your application. Be
sure to document which array elements are for which data in order to properly assign data
to/from user variables in the Propeller object as well as controls in the PC application.

Propeller Communication
As mentioned above, the PC_Comms method launched into another cog actually uses the
FullDuplexSerial.spin object written by Parallax to handle serial communication. This library
object launches into a third cog and handles buffering of 16 bytes of data in each direction,
bit timing, as well as other functions not used in this application. The sole purpose of the
PC_Comms method is to receive a data packet from the PC application and respond with a
data packet. The Propeller will only send a single packet after receiving one. This ensures
that the incoming array is not being overwritten with null data and that the Propeller is not
needlessly sending data if the PC application is not listening or running.

The Propeller application includes a PUB Main method, which first launches the PC_Comms
method into another cog. Since this object is intended to be a template no error checking is
done here; it assumes that there is an available cog for the PC_Comms method. After the
cognew command the user should feel free to place their program ensuring only that the
PC_Comms method stays intact.

The four lines in the QuickStartCommunicatorV1.0.spin object demonstrate how to easily
activate I/O using the data from the datain array, confirm activation by setting the
dataout array, and place data (such as key presses) into the dataout array.

The following line of code gets data from the datain array element zero, places it into
dataout array element zero, and then writes it to P23 through P16 on the Propeller. On

Communication with a PC Application v1.0 2 of 5

Parallax Semiconductor AN018

the P8X32A QuickStart board[1] this effectively turns on LEDs on the board for each bit set in
the received byte.

 outa[LED7..LED0] := dataout[0] := datain[0]

Copying the byte back into the dataout array provides a method of feedback to the PC
application. Use this return data to update visual controls as a confirmation that the
Propeller received the sent command.

The following line of code places the current state of the switches into the dataout array
element one.

 dataout[1] := buttons.State

Note: if using active-low pushbuttons, such as those on the Propeller Professional
Development Board[2], use the following line of code instead:

 dataout[1] := !ina[BTN7..BTN0]

PC Communication
PC programmers have many choices for PC development software including C/C++/C#,
Delphi, Real BASIC and Visual BASIC to name a few. Visual Studio 2008 Express Edition
and VB.NET were used to create this demo application. The 2010 Express edition of Visual
BASIC and the QuickStart Communicator application are available at the links provided in
the References section on page 5. The QuickStart Communicator application zip file
contains a source project folder which would typically be placed in your ‘My Documents’
folder within the Visual Studio 2010 folder.

To customize the application only two sections need to be modified. First and foremost the
main form was set up with an I/O Data group which contains all the controls specific to the
demo application. To create your own application, remove these controls leaving the I/O
Data group box empty, then place the controls you need in your application, resizing the
form and I/O Data group box as necessary.

The only section in the code you should need to modify is the TextOut sub. You can see
how to assign control values and data to the outgoing array as well as how to assign
incoming data from the input array to various controls. This will be very similar for other
form controls such as text boxes and TrackBar controls. Just remember that the values to
and from the array are byte values and therefore are limited to 0-255 or a single ASCII
character. Always select 38.4 kbps for this application since the timeout and delay values
have been optimized for this data transfer rate. Other baud rates are listed for the sole
purpose of making that section of the application flexible for other uses.

QuickStart Communicator Spin Template
CON

 _CLKMODE = XTAL1 + PLL16X ' Use crystal x 16
 _XINFREQ = 5_000_000 ' 5 MHz crystal (system clock = 80 MHz)

CON

 RX_PIN = 31 ' Propeller RX pin
 TX_PIN = 30 ' Propeller TX pin

Communication with a PC Application v1.0 3 of 5

Parallax Semiconductor AN018

 SDA_PIN = 29 ' I2C SDA pin
 SCL_PIN = 28 ' I2C SCL pin

 LED7 = 23 ' Highest button on QuickStart Board
 LED0 = 16 ' Lowest button on QuickStart Board

CON

 PC_BAUD = 38_400 ' Optimum Baud Rate for PC application
 MODE = %0000 ' Serial Port mode (See FullDuplexSerial.spin)

OBJ

 serial : "FullDuplexSerial" ' Handles serial communication
 buttons : "Touch Buttons" ' Reads Touch Pads On QuickStart Board

VAR

 Byte datain[16] ' 16 byte array for incoming data
 Byte dataout[16] ' 16 byte array for outgoing data
 Long stack[32] ' Stack space reserved for Communicate method

PUB Main

 cognew(PC_Comms, @stack) ' Launch Communicate method into a new cog
 buttons.start(CLKFREQ / 100) ' Launch new cog for button detection
 ' (only used by QuickStart Board for Demo)

'' User code begins here

 dira[LED7..LED0] := %1111_1111 ' Set LED 0-7 I/O lines to output
 ' (required for QuickStart Communicator Demo)

 repeat ' Loop indefinitely (req. for QuickStart Demo)
 outa[LED7..LED0] := dataout[0] := datain[0] ' Activate LEDs and return confirmation
 ' to VB app. (req. for QuickStart Demo)
 dataout[1] := buttons.State ' Encode touch switches into second byte
 ' of array

PRI PC_Comms | iobyte, index ' Declare private method and 2 local vars

 serial.start(RX_PIN, TX_PIN, MODE, PC_BAUD) ' Start UART (FullDuplexSerial) cog
 serial.rxflush ' Flush receive buffer

 repeat ' Loop indefinitely
 index := 0
 repeat
 iobyte := serial.rxtime(10) ' Get character
 if iobyte == byte[@pcheader][index] ' Header match?
 index += 1 ' Yes, try next
 else
 index := 0 ' No, restart
 until index == 4 ' Header complete

 repeat index from 0 to 15 ' Get 16-byte packet from PC
 iobyte := serial.rxtime(10)
 if iobyte => 0
 datain[index] := iobyte
 else
 quit ' Abort on timeout

Communication with a PC Application v1.0 4 of 5

Parallax Semiconductor AN018

Communication with a PC Application v1.0 5 of 5

 serial.str(@myheader) ' Send header to PC
 repeat index from 0 to 15 ' Send 16-byte packet to PC
 serial.tx(dataout[index])

DAT

pcheader Byte "!VB", 10
myheader Byte "!P1", 10, 0

Resources
The following zip archives are available for download from this application note’s web page
at www.parallaxsemiconductor.com/an018.

AN018 QuickStart Custom Visual BASIC Project folder
AN018 QuickStart Communicator Spin code archive

References
1. P8X32A QuickStart Board; part #40000; www.parallaxsemiconductor.com
2. Propeller Professional Development Board; Parallax part #32111, www.parallax.com
3. Microsoft Visual Studio 2010 Express: http://www.microsoft.com/express/Windows/

Revision History
Version 1.0: original document.

Parallax, Inc., dba Parallax Semiconductor, makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Parallax, Inc., dba Parallax Semiconductor, assume any liability arising out of the application or
use of any product, and specifically disclaims any and all liability, including without limitation consequential or incidental damages
even if Parallax, Inc., dba Parallax Semiconductor, has been advised of the possibility of such damages. Reproduction of this
document in whole or in part is prohibited without the prior written consent of Parallax, Inc., dba Parallax Semiconductor.

Copyright © 2011 Parallax, Inc. dba Parallax Semiconductor. All rights are reserved.
Propeller and Parallax Semiconductor are trademarks of Parallax, Inc. All other trademarks herein are the property of their
respective owners.

	Introduction
	Communication
	Resources
	References
	Revision History

