
Column #133: Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

Column #133, May 2006 by Jon Williams:

Object of the Machine

So, is your head spinning after last month's introduction to the Propeller chip? Don't worry,
it happens to all of us, and I promise that after a bit of time things will begin to click, a big
smile will cross your face, and wonderful things you thought never possible will start
happening. Last month we talked about the Spin programming language being object
oriented, but didn't really take advantage of it. Let's change that, shall we? and unleash some
of the power of the Propeller multi-controller.

While I consider myself a pretty fair programmer, I always qualify that statement with the
assertion that I'm a pretty fair high-level language programmer. Of course, I can program a
bit of assembly, but I really don't like to. What that means, then, is when I've wanted to
incorporate assembly code written by another programmer (e.g., in an SX/B project), it's been
a bit of work. I've got great news for Propeller users: using assembly language written by
another programmer is no trouble at all, and we're going to see that this month.

But let's go through a bit of a review first. Remember that the Propeller chip has eight 32-bit
cogs (processors) in it, and all can be running at the same time. Every cog that is running has
direct access to the I/O pins, as well as to the main system counter (useful for generating
delays). There is a system manager called the "hub" that controls access to the shared
resources; specifically the main system RAM (32K).

A cog can run the Spin language interpreter, or a custom assembly language program. The
fact is that the Spin interpreter is an assembly language program that is loaded from the
system ROM when needed. So, for those of you concerned about each cog having only 2K of

 Column #133: The Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

RAM, don't be; this is plenty for assembly programs (remember, this is a whole new assembly
language and is very efficient). Any Spin code that we write actually resides in the main
system RAM, so our Spin programs and their data space can be up to 32K. Of course, there is
a performance difference between Spin and Assembly, by about a factor of 250x. That said,
Chip has estimated that with a 5 MHz crystal and using the 16x PLL tap (system clock of 80
MHz), we can run about 80K Spin instructions per second. That’s pretty fast.

So let's jump right in and demonstrate Propeller objects and the ability to use assembly
language with our Spin projects. For our first project we're going to create a "debug" object
that allows us to send information to a PC. Some of you may be surprised that this is not a
built-in function – don't be. The Propeller is a different beast and you wouldn't want to be
penalized by having code space consumed by unused functions. Let's say you'd rather send
values to a TV; you can do that using the TV_Terminal object that Chip wrote and comes
with the Propeller installation. In fact, I've borrowed the numeric conversion routines from
TV_Terminal object for us in PC_Debug. Let's build that object.

The purpose of PC_Debug is, of course, to send information to a PC terminal program. What
this means, then, is that we need a code to handle the serial transmission. While we could do
that ourselves, why bother? as Chip has kindly written a high-performance UART object
called FullDuplex that we can take advantage of. What we're going to do with PC_Debug is
provide a convenient wrapper for FullDuplex that gives us access to most of the methods in
FullDuplex, as well as adding any conveniences that we might like to have (like number-to-
string conversion).

Notice that the ZIP file I've provided for downloading this month has a very specific name
and naming convention; this is actually a Propeller archive file. We'll talk more about
archives later, just know for the moment that an archive contains all the files we need for a
given project. Expand the archive so that you can open the files with the Propeller Tool, and
then have a look at PC_Debug.spin.

In order to use an object in our program we need to declare it; we do that in the OBJ block
like this:

OBJ
 uart : "fullduplex"

We now have an object in our project called "uart" that – once started – gives us buffered
serial communications using another cog (which means it can do things without affecting the
program running in the our main program cog). What we've done, in essence, is added a
serial coprocessor to our system. Pretty cool, huh? It gets better.

Column #133: Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

The Parallax philosophy is that support objects, i.e., those that are not intended to stand alone,
will have a method called "start" that is used for instantiation. The start method will usually
return True (-1) or False (0) based on the success of the code at start. Note that there is no
hard-and-fast rule on this, it's just the current convention.

Since PC_Debug is also designed as a support object, it will also have a start method. Here it
is:

PUB start(baud) : okay

 okay := uart.start(31, 30, baud)

This is a simple method, and yet a lot is happening. We start with the PUB declaration – we
need this method to be public so that it can be accessed by higher-level objects. This method
is expecting a parameter called baud. Note that no matter what size we need, a parameter is
always passed as a Long. This method will return a value as well; the variable after the colon
(okay) is what will be returned. Return values are also Longs but can be caste to smaller sizes
(Word or Byte) if needed.

The code now is just one line: we're assigning the return value of the uart.start method to
okay. As we can see, Spin uses the dot notation found in other object-oriented languages.
We can also tell that the uart.start method expects three parameters: the receive pin, the
transmit pin, and the baud rate). What we've done here is started the uart object using the
Propeller's standard programming pins.

But what if we've got an extra port on our PC and would rather send information to it using a
couple free I/O pins? No problem, we'll just create another method.

PUB startx(rx_pin, tx_pin, baud) : okay

 okay := uart.start(rx_pin, tx_pin, baud)

As you can see the startx (x for extra) method simply passes along the desired pins with the
baud rate. Using this method we could actually open more than one terminal at the same time
(using different ports on our PC, of course). Spin even lets us define an array of objects, so
we could do this:

 Column #133: The Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

OBJ
 terminal[2] : "pc_debug"

Now we just need to assign the terminals to different Propeller I/O pins.

PUB main

 terminal[0].start(9600)
 terminal[1].startx(1, 0, 57600)

In this case terminal.[0] is using the default programming pins (A31 and A30) at 9600 baud,
and terminal.[1] is using A1 (for RX) and A0 (for TX) at 57,600 baud. Keep in mind that the
underneath the terminal objects is the FullDuplex UART object that requires its own cog, so
the definition above would require two free cogs to operate.

Let's get back to our PC_Debug object. Again, this is a wrapper for FullDuplex that adds
features convenient for sending data to a terminal. Since the FullDuplex object starts a new
cog it also has a method for stopping that cog and making it available for other processes. By
convention this method is called stop and we simply provide access to it.

PUB stop

 uart.stop

This may seem redundant but in fact it's not. You see, any program (top object) that uses
PC_Debug will not direct access to methods in FullDuplex – we must explicitly provide
wrappers for them. The good thing about this is that we can provide wrappers only as needed,
and leave the other methods (even public) protected to a degree. Figure 133.1 shows object
hierarchy of our project completed project; note that PC_Debug_Test does not have a direct
connection to Full_Duplex.

Column #133: Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

Figure 133.1: The Project’s Object Heirarchy

As you look through the PC_Debug object you'll see that that are several other wrappers for
objects in FullDuplex; they're self-evident and we don't need to describe them all in detail.
Let's jump into the custom methods that are at the purpose of our project: converting values to
strings so that we can send them to a terminal program.

Since we'll most frequently use decimal values, let's start there. The following method will
print a signed decimal number.

PUB dec(value) | div, zpad

 if (value < 0)
 -value
 out("-")

 div := 1_000_000_000
 zpad~

 repeat 10
 if (value => div)
 out(value / div + "0")
 value //= div
 zpad~~
 elseif zpad or (div == 1)
 out("0")
 div /= 10

Okay, I know that this may look a little cryptic at first, but please trust me that once you get
used to Spin you'll love the efficiency of the language. As I told you last month, Spin

 Column #133: The Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

borrows from other languages, and those of you that have programmed in C will probably
recognize some of the operators and constructs right away.

Let's start with the declaration because it includes something new. We can see that we're
going to pass a value, and following that is a vertical bar and two symbols: div and zpad. The
symbols are local variables that will be used by the method. Note that local variables are not
persistent and will be destroyed when we exit from the method.

The beginning of the code is quite simple; we simply check to see if the value passed is
negative and if it is we make it positive and print a "-" character with the out method. Next
we initialize the divisor (div) and clear the zpad flag. There are a few cool things here: with
32 bits, we can deal with really big numbers (-2,147,483,648 to +2,147,483,647), and Spin
lets us see this clearly by using and underscore character where a comma would normally be.
Next is a new operator, the post clear (~) operator.

As you spend more time you'll find the Spin is very advanced, and the placement of an
operator can change its meaning considerably. In our case the trailing tilde means that we're
going to clear the variable to zero. So…

 zpad~

is the same as

 zpad := 0

but the former version is in fact more efficient internally. Now we get to the meat of the dec
method. Since the largest value in the system can be up to 10 digits wide, we'll run the digit
conversion loop 10 times. Again, note the efficiency with the simple repeat 10 statement; this
replaces for x = 1 to 10 in BASIC (though there is an implementation of repeat that allows us
to specify start and end values). You may be wondering about the control variable for the
repeat loop; this comes from the interpreter's stack.

Now we check to see if value is equal to or greater than the divisor. If it is, we get the current
column digit by dividing value by the divisor, and then convert it to ASCII by adding "0"
(decimal 48). Now we remove the current column by taking the modulus of the divisor.
Since we've started printing digits we will now set the zpad flag so that we print zeros in
proceeding columns as needed. Note the post-set operator (two trailing tildes); this sets all the
bits of the variable to 1 (making the value -1, which is generally used as True).

Column #133: Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

When the current value is less than the divisor, we check the zpad flag or for the current
column being 1; if either of those conditions is true then we'll print a zero. The final step is to
adjust the divisor between columns by dividing it by 10.

Okay, now let's look at binary and hex conversion. These routines are trim and elegant (I
didn't create them so I can say that), yet also demonstrate some neat features in Spin. We'll
start with binary as it is the simpler of the two.

PUB bin(value, digits)

 digits := 1 #> digits <# 32
 value <<= 32 - digits
 repeat digits
 out((value <-= 1) & %1 + "0")

This method differs slightly from dec in that we're required to specify a number of digits, but
as you can see, there's really not much to the code. We start by qualifying the digits
parameter with the #> (limit minimum) and <# (limit maximum) operators – this takes care of
a bad value getting passed to the method. Then we shift the MSB of the printed output to bit
31 with the left shift operator. Note that as with many other operators, left-shift (<<) and
variable assignment (:=) are combined into a single operator.

Now for the real work; a loop is used to print the number of digits passed. The code starts by
rotating the bits left one position. Rotating differs from shifting in that no bits are lost, they
simply wrap around to the other end of the value. So when we rotate left (<-) by one bit, what
was in bit 31 ends up in bit 0. Now we AND this with %1, and then convert the digit to
ASCII for printing. I don't know about you, but I think this routine is pretty darned nifty.

Okay… ready for hex conversion? It's similar, but we're dealing with nibbles so there's a little
extra in the code.

PUB hex(value, digits)

 digits := 1 #> digits <# 8
 value <<= (8 - digits) << 2
 repeat digits
 out(lookupz((value <-= 4) & %1111 : "0".."9", "A".."F"))

Since a hexadecimal digit occupies four bits, we have to shift by four bits to align the most
significant digit. After qualifying digits and subtracting that from eight, we shift the
intermediate result by two – this is a more efficient way of multiplying by four. Our repeat

 Column #133: The Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

loop works like it did in the bin method, except that we rotate value by four bits for each digit,
AND with %1111, and finally use lookupz (zero-indexed lookup) for the correct digit
character to print. A useful feature in lookupz is the ability pass an implicit list of values
requiring only the starting and ending points, hence "0".."9" replaces "0123456789". Note,
too, that we can create a compound list by separating multiple lists and items with commas.

I think it's about time to put our PC_Debug object to work, don't you? In the archive you'll
find a simple program called PC_Debug_Test.spin. It's pretty short, and with what we've
already been through we can focus on the body of the program; the CON and OBJ sections
are very straightforward.

PUB main | idx

 debug.start(460_800)
 debug.str(string(FF, "Debug Test", CR, LF, LF))

 repeat
 debug.hex(idx, 2)
 debug.out(Space)
 if ((++idx // 16) == 0)
 debug.crlf
 until (idx == $100)

 debug.crlf
 debug.dec(-1)
 debug.crlf
 debug.ibin(-1, 32)
 debug.crlf
 debug.ihex(-1, 8)
 debug.stop

There's only one public method in the program, and I've called it main – this is a style choice
and not required. Remember, the first public method is what runs when a Spin program is
launched. The first thing we do is start the debug object, and have a look at that baud rate:
460,800 – that is not a typo, that is 460.8 kBaud. Remember I said Chip's FullDuplex object
was "high performance"? Now you can see what I'm talking about. And this is with a 5
MHz crystal connected to the Propeller chip.

Column #133: Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

Figure 133.2: Output in the HyperTerminal

The first thing printed is a string that is composed of a form feed character (clears the screen
in HyperTerminal), some text, a carriage return, and a couple line feeds. All this is assembled
with the string method which creates the inline string and returns a pointer (the address in
memory of) to it. The string pointer is what's used by the debug.str method for printing. This
is fine for one-off strings, but if we're going to use the same text more than once it's better to
embed it into a DAT block like this:

DAT

title byte "Nuts & Volts rocks!", 0

Note the zero terminator; this is important so don't leave it out. To print this string we can
pass a pointer to it with the @ operator.

 debug.str(@title)

The main body of the program is a loop that prints hex values from $00 to $FF in a 16 by 16
array. After printing the digit and a space, the value of idx is incremented and then tested
with modulus to see if 16 values have been printed on the current line. If so, and carriage-
return and line feed are inserted. The value of idx is tested at the end of the loop for
termination.

 Column #133: The Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

Of course, there are several ways to skin this cat – we could have constructed the start of the
loop like this:

 repeat idx from $00 to $FF

Another option is to replace the until termination with:

 if (idx == $100)
 quit

My point is to show you that repeat – the only looping construct in Spin – is quite flexible and
has a wide variety of options.

Okay, now that you've got a tool for sending values to a PC terminal program it is time to
play; you have enough to experiment with the Spin programming language and get used to it
before we start connecting external hardware.

Propeller Archives
You'll notice that the ZIP that contains the files for this month has a very specific name; this
ZIP was created by the Archive selection of the Propeller Tool > File menu. This is a
tremendously useful feature of the IDE; it lets us gather and archive all the files of a project,
no matter where the files are located on the system. This makes sharing projects with others a
breeze as you are ensured that they will get everything they need. There's also an Archive
feature that includes the IDE! With this you can open an archive folder several years from
now and know that you've got what you need to recreate that project.

Have fun with your Propeller, and until next time…. Happy Spinning! And yes, we'll be back
to working with the BASIC Stamp and SX very soon.

Column #133: Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

Project Code
───────────────────────────────────────
Parallax Propeller Chip Project Archive
───────────────────────────────────────

 Project : "PC_Debug_Test"

Archived : Friday, March 17, 2006 at 5:31:49 PM

 Tool : Propeller Tool version 0.71.5

 PC_Debug_Test.spin
 │
 └──PC_Debug.spin
 │
 └──FullDuplex.spin

────────────────────
Parallax, Inc.
www.parallax.com
support@parallax.com
USA 916.624.8333

'' *******************
'' * PC_Debug_Test *
'' *******************

CON

 _clkmode = xtal1 + pll16x ' use crystal x 16
 _xinfreq = 5_000_000 ' external xtal is 5 MHz

 CR = 13
 FF = 12
 LF = 10
 Space = " "

OBJ

 debug : "pc_debug"

PUB main | idx

 debug.start(460_800) ' start terminal

 Column #133: The Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

 debug.str(string(FF, "Debug Test", CR, LF, LF)) ' print string

 repeat
 debug.hex(idx, 2)
 debug.out(Space)
 if ((++idx // 16) == 0)
 debug.crlf
 until (idx == $100)

 debug.crlf
 debug.dec(-1)
 debug.crlf
 debug.ibin(-1, 32)
 debug.crlf
 debug.ihex(-1, 8)
 debug.stop ' shutdown debug (uart) cog

'' *****************************
'' * PC_Debug *
'' * (C) 2006 Parallax, Inc. *
'' *****************************
''
'' Creates a "debug" object useful for sending values to a PC terminal program.

OBJ

 uart : "fullduplex"

PUB start(baud) : okay

'' Starts uart object (at baud specified) in a cog
'' -- uses Propeller programming connection
'' -- returns false if no cog available

 okay := uart.start(31, 30, baud)

PUB startx(rx_pin, tx_pin, baud) : okay

'' Starts uart object (at baud specified) in a cog
'' -- uses specified rx and tx pins
'' -- returns false if no cog available

 okay := uart.start(rx_pin, tx_pin, baud)

PUB stop

'' Stops uart -- frees a cog

 uart.stop

Column #133: Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

PUB out(txbyte)

 uart.tx(txbyte)

PUB str(string_ptr)

'' Print a zero-terminated string

 uart.str(string_ptr)

PUB dec(value) | div, zpad

'' Print a signed decimal number

 if (value < 0) ' negative?
 -value ' yes, make positive
 out("-") ' and print sign indicator

 div := 1_000_000_000 ' initialize divisor
 zpad~ ' clear zero-pad flag

 repeat 10
 if (value => div) ' printable character?
 out(value / div + "0") ' yes, print ASCII digit
 value //= div ' update value
 zpad~~ ' set zflag
 elseif zpad or (div == 1) ' printing or last column?
 out("0")
 div /= 10 ' point to next column

PUB hex(value, digits)

'' Print a hexadecimal number

 digits := 1 #> digits <# 8 ' qualify digits
 value <<= (8 - digits) << 2 ' prep MS digit
 repeat digits
 out(lookupz((value <-= 4) & %1111 : "0".."9", "A".."F"))

PUB ihex(value, digits)

 out("$")
 hex(value, digits)

PUB bin(value, digits)

'' Print a binary number

 digits := 1 #> digits <# 32 ' qualify digits
 value <<= 32 - digits ' prep MSB
 repeat digits

 Column #133: The Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

 out((value <-= 1) & 1 + "0")

PUB ibin(value, digits)

 out("%")
 bin(value, digits)

PUB tab

 out(9) ' send Tab character

PUB lf

 out(10) ' send line feed

PUB ff

 out(12) ' send form feed

PUB newline

 out(13) ' send CR character

PUB crlf

'' Useful for terminals that don't add LF to CR

 out(13) ' send CR character
 out(10) ' send line feed

PUB in : rxbyte

'' Get a character
'' -- will block until something in uart buffer

 rxbyte := uart.rx

''************************************
''* Full-Duplex Serial Driver v1.0 *
''* (C) 2006 Parallax, Inc. *
''************************************
''
'' Updated 15 MAR 06 : Increased buffers to 64 bytes

VAR

Column #133: Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

 long cogon, cog

 long rx_head '8 contiguous longs
 long rx_tail
 long tx_head
 long tx_tail
 long rx_pin
 long tx_pin
 long bit_ticks
 long buffer_ptr

 byte rx_buffer[64] 'transmit and receive buffers
 byte tx_buffer[64]

PUB start(rxpin, txpin, baudrate) : okay

'' Start serial driver - starts a cog
'' returns false if no cog available

 stop
 longfill(@rx_head, 0, 4)
 longmove(@rx_pin, @rxpin, 2)
 bit_ticks := clkfreq / baudrate
 buffer_ptr := @rx_buffer
 okay := cogon := (cog := cognew(@entry,@rx_head)) > 0

PUB stop

'' Stop keyboard driver - frees a cog

 if cogon~
 cogstop(cog)
 longfill(@rx_head, 0, 8)

PUB rxcheck : rxbyte

'' Check if byte received (never waits)
'' returns -1 if no byte, $00..$FF if byte

 rxbyte--
 if rx_tail <> rx_head
 rxbyte := rx_buffer[rx_tail]
 rx_tail := (rx_tail + 1) & $3F

PUB rx : rxbyte

'' Receive byte (may wait for byte)
'' returns $00..$FF

 repeat while (rxbyte := rxcheck) < 0

 Column #133: The Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

PUB tx(txbyte)

'' Send byte (may wait for room in buffer)

 repeat until (tx_tail <> (tx_head + 1) & $3F)
 tx_buffer[tx_head] := txbyte
 tx_head := (tx_head + 1) & $3F

PUB str(stringptr)

'' Send string

 repeat strsize(stringptr)
 tx(byte[stringptr++])

DAT

'***********************************
'* Assembly language serial driver *
'***********************************

 org
'
'
' Entry
'
entry mov t1,par 'get rx_pin
 add t1,#4 << 2
 rdlong t2,t1
 mov rxmask,#1
 shl rxmask,t2

 add t1,#4 'get tx_pin
 rdlong t2,t1
 mov txmask,#1
 shl txmask,t2

 add t1,#4 'get bit_ticks
 rdlong bitticks,t1

 add t1,#4 'get buffer_ptr
 rdlong rxbuff,t1
 mov txbuff,rxbuff
 add txbuff,#64

 or outa,txmask 'init tx pin to high output
 or dira,txmask

 mov txcode,#transmit 'set initial receive code ptr
'
'
' Receive
'
receive jmpret rxcode,txcode 'run transmit code, then return

Column #133: Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

 test rxmask,ina wc 'wait for start bit
 if_c jmp #receive

 mov rxbits,#9 'ready to receive byte
 mov rxcnt,bitticks
 shr rxcnt,#1
 add rxcnt,cnt

:bit add rxcnt,bitticks 'ready next bit period

:wait jmpret rxcode,txcode 'run transmit code

 mov t1,rxcnt 'check if bit receive period done
 sub t1,cnt
 cmps t1,#0 wc
 if_nc jmp #:wait

 test rxmask,ina wc 'get bit
 rcr rxdata,#1
 djnz rxbits,#:bit

 shr rxdata,#32-9 'justify and trim received byte
 and rxdata,#$FF

 rdlong t2,par 'save received byte and inc head
 add t2,rxbuff
 wrbyte rxdata,t2
 sub t2,rxbuff
 add t2,#1
 and t2,#$3F
 wrlong t2,par

 jmp #receive 'byte done, receive next byte
'
'
' Transmit
'
transmit jmpret txcode,rxcode 'run receive code, then return

 mov t1,par 'check for head <> tail
 add t1,#2 << 2
 rdlong t2,t1
 add t1,#1 << 2
 rdlong t3,t1
 cmp t2,t3 wz
 if_z jmp #transmit

 add t3,txbuff 'get byte and inc tail
 rdbyte txdata,t3
 sub t3,txbuff
 add t3,#1
 and t3,#$3F
 wrlong t3,t1

 or txdata,#$100 'ready byte to transmit

 Column #133: The Object of the Machine

The Nuts and Volts of BASIC Stamps 2006

 shl txdata,#1
 mov txbits,#10
 mov txcnt,cnt

:bit test txdata,#1 wc 'output bit
 muxc outa,txmask
 add txcnt,bitticks 'ready next cnt

:wait jmpret txcode,rxcode 'run receive code

 mov t1,txcnt 'check if bit transmit period done
 sub t1,cnt
 cmps t1,#0 wc
 if_nc jmp #:wait

 shr txdata,#1 'another bit to transmit?
 djnz txbits,#:bit

 jmp #transmit 'byte done, transmit next byte
'
'
' Uninitialized data
'
t1 res 1
t2 res 1
t3 res 1

bitticks res 1

rxmask res 1
rxbuff res 1
rxdata res 1
rxbits res 1
rxcnt res 1
rxcode res 1

txmask res 1
txbuff res 1
txdata res 1
txbits res 1
txcnt res 1
txcode res 1

