
Copyright © Nuts&Volts Magazine BASIC Propeller Programming March 2010 Page 1 of 11

BASIC Propeller Programming
By Jon Williams

For Nuts & Volts Magazine, Column 5, March 2010

We knew it had to happen, right? After all, Parallax and BASIC go together like macaroni and cheese; on
their own the elements are great – when you get them together you create absolute magic!

I think it's safe to say that more than a few Parallax customers were disappointed when the Propeller
arrived and couldn't be programmed in BASIC. Like me, many of these customers had invested years
learning and working with BASIC, and a good portion of that group had a lot of time with embedded
projects thanks to PBASIC. Now, I'm not being critical – Spin is okay with me and I'm quite comfortable
with it. That said, I've been programming in one form of BASIC or another for almost 30 years, and that
kind of makes BASIC a little bit hard to give up.

Well... good news! The team that developed SX/B (headed by Terry "Bean" Hitt) has taken the lessons
learned from that product and created a BASIC language compiler for the Propeller: PropBASIC. So, if
you've been holding off getting into the Propeller because you couldn't use BASIC, you have no more
excuses.

What is PropBASIC, Anyway?
Beyond the obvious, of course, PropBASIC is a single-pass compiler that generates Propeller Assembly
code so that our programs run at the fastest possible speed. The output is one or more Spin files that
can be downloaded to the Propeller. In version 1.0 the main program code is limited to a single cog.
Don't let this bother you – Propeller Assembly is very powerful and processes that take several Assembly
instructions in other micros are handled with a single instruction in the Propeller. To top that, we have
seven additional cogs available and PropBASIC lets us use them with tasks. In the future it is very likely
that PropBASIC will adopt [Propeller-whiz] Bill Henning's LMM (large memory model) architecture,
allowing the compiled output to run from the Hub RAM, breaking the 2K limit imposed by a cog.

For those that have used SX/B, PropBASIC will seem very familiar and you should be able to migrate
many of your projects with just a few changes. If you're coming straight from the BASIC Stamp (or one of
its many work-alikes) you'll find PropBASIC similar to PBASIC, though not directly compatible. Trust me,
it's not a problem; the learning curve is very shallow. Many of us, myself included, transitioned from the
BASIC Stamp to the SX using SX/B. The transition from PBASIC to PropBASIC will be just as easy, and
a lot of fun. Yes, you'll have to get used to a slightly-new way of doing things, but once you do you'll wish
you'd made the transition to a multi-core processor sooner!

Hello, PropBASIC
Every PC programming book, no matter the language it teaches, starts out with the now-infamous "Hello,
World" program. Starting simple is smart as it allows us to get the fundamentals in place before tackling
the big stuff. In the microcontroller world we tend to blink an LED. Trivial? Yes. Important? Yes! – if we
can't blink an LED then we certainly can't expect to control a multi-axis robot using GPS input now, can

Copyright © Nuts&Volts Magazine BASIC Propeller Programming March 2010 Page 2 of 11

we? Go ahead and connect an LED circuit as shown in Figure 1. If you have a Propeller Demo Board
that LED is in place.

Figure 1

Nothing drives me nuttier than messy program listings – I hate them. An easy way to get a neat listing in
the end is to start with a clean template. In the downloads file you'll find template.pbas which is what I
use to start most projects (I have a few other templates, too, based on different project types). Starting
with template.pbas I've created hello.pbas which we'll work through to introduce the elements of a
PropBASIC program. Of course, not all sections of the template are used for a simple LED blinker, but
we'll introduce them, anyway, and then explore them later.

Again, if you've worked with SX/B much of this will be very familiar. If you're coming from the BASIC
Stamp there will be some new things to get used to; trust me, you can, and when you do so many neat
things will open up for your [perhaps postponed] projects.

All right, let's go through it, section-by-section.

Device Settings

DEVICE P8X32A, XTAL1, PLL16X
XIN 5_000_000

We'll start nearly every PropBASIC program with this "standard" setup; it declares the Propeller 1
(P8X32A), running with an external crystal, using a PLL multiplier of 16x. The external crystal frequency
is 5 MHz which gives us a system frequency of 80 MHz (5 x 16).

There are, of course, options to the standard setup. For low-power applications that are not timing-
sensitive we can select one of the RC modes. RCFAST runs the chip at about 12 MHz while RCSLOW
runs the chip at about 20 kHz. To run in RCFAST mode we can reduce the setup to this:

DEVICE P8X32A

When no mode is specified the compiler assumes RCFAST; to use RCSLOW we must specify it in the
DEVICE directive. In RC modes the PLL is always 1x and the XIN value is ignored. Again, RC modes
should only be used in programs that are not timing-sensitive, as the RC oscillator varies from chip-to-
chip. RC modes would not, for example, be good to use when serial communications is a requirement.

That last statement probably caused you sharp folks to raise a Spock-like eyebrow.... If RC modes are no
good for serial communications then how can the IDE reprogram the Propeller when no crystal is
attached? Good question. The IDE actually times the Propeller as part of the download protocol and
then adjusts the baud rate from the IDE to accommodate the individual chip. So, if you really have to use
serial communications and need a low clock speed to reduce current consumption, you can do it but you'll
need to do a couple extra steps:

 Measure the clock speed in RC mode (with no FREQ specified). You can do this by measuring
the width of an output pulse using an oscilloscope.

 Override the assumed RC frequency by using the FREQ directive instead of XIN (which doesn't

apply to RC modes, anyway).

Copyright © Nuts&Volts Magazine BASIC Propeller Programming March 2010 Page 3 of 11

Let's say we create a program (see speed_test.pbas) to output a 10 ms pulse and on a 'scope we
measure – as I did – a pulse width of 9.06 milliseconds. This means that the processor is actually
running a little faster than expected. We can calculate a scale factor for the assumed clock frequency by
dividing the measured pulse width into the 10 milliseconds we expected.

scale = 10.0 / measured

In my case the scale factor works out to 1.1038. I had selected RCSLOW mode which has an assumed
frequency of 20 kHz. With the adjustment the top of my program is now:

DEVICE P8X32A, RCSLOW
FREQ 22_075

The FREQ setting will drive the compiler and in the end we'll have corrected timing for things like PAUSE,
SEROUT, etc. Figure 2 shows the uncorrected output (without using FREQ) from my test, Figure 3 is
after the FREQ setting has been added.

Figure 2

Copyright © Nuts&Volts Magazine BASIC Propeller Programming March 2010 Page 4 of 11

Figure 3

Program Constants
The next section of the template involves defining constants. There's no mystery here with standard
numeric and single-character constants.

OnTime CON 250
OffTime CON 750
IsOn CON 1
IsOff CON 0
Asterisk CON "*"

If a program will be using SERIN or SEROUT then the baud mode constant is defined like a string.

Baud CON "T9600"

This definition can be used to drive SERIN and SEROUT in true mode (standard when using the
programming port) at 9600 baud. Mind you I'm just using this as an example – PropBASIC compiles to
Assembly and when running at 80 MHz we can have very fast baud rates.

Constants are global in a PropBASIC application and can be used in multiple cogs (i.e., the main program
and any tasks that run).

Copyright © Nuts&Volts Magazine BASIC Propeller Programming March 2010 Page 5 of 11

IO Pins

LED PIN 16 LOW

Declaring IO pins in PropBASIC is very much like PBASIC 2.5 and SX/B, while using the SX/B convention
of allowing the pre-assignment of the pin state immediately after a reset. The options for a pin are INPUT
(default), OUTPUT (same as LOW), LOW, and HIGH. In my programs that will communicate with a
terminal program I include these PIN definitions

RX PIN 31 INPUT
TX PIN 30 HIGH

Note the use of the HIGH option; I do this so that auto-generated start-up code places the TX pin in the
idle state (output and high) for serial communications through the Propeller programming port.

PropBASIC allows the definition of a group of IO pins as well. For example, there are eight LEDs on the
Propeller Demo Board, connected to P16 through P23. We can define these as a group using the
following declaration:

LEDs PIN 23..16 LOW

In a pin group definition the first number is the MSB pin of the group, the second is the LSB pin of the
group. The order is important as it affects how bits will be presented at outputs or read when the group is
set as inputs.

In PropBASIC 1.0 we can only assign a simple value to an output pin group. That means that this line:

 LEDs = %100000

...is legal, but...

 LEDS = 1 << position

...is not. This is likely to be addressed in a future version. In the mean time we can use one of
PropBASIC's temporary variables like this:

 __temp1 = 1 << position
 LEDs = __temp

Shared Variables
PropBASIC allows us to store variables and variable arrays in the Hub that can be accessed by any cog.
Hub variables may be defined as bytes, words, or longs, or arrays of either type.

rxHead HUB Byte = 0
rxTail HUB Byte = 0
rxBuffer HUB Byte(64) = 0

Note that PropBASIC allows us to pre-assign values to Hub variables. If the pre-assignment option is not
used the variable (and all elements of an array) will be set to zero. Though they are variables, what we
store in the Hub cannot be used in expressions like regular variables. There are two instructions,
RDxxxx and WRxxxx, that are used to read and write Hub variables (the instruction used will be based
on the variable size, you'll see examples in a moment).

Copyright © Nuts&Volts Magazine BASIC Propeller Programming March 2010 Page 6 of 11

Shared Data
Along with variables we can store shared data in the Hub as well. With 32K of RAM this allows for very
large tables, and being in the Hub these tables can be accessed from any cog. Hub data can be declared
as bytes, words, or longs using, respectively, the DATA, WDATA, and LDATA directives.

Zip4 DATA %0001
 DATA %0010
 DATA %0100
 DATA %1000

As with Hub variables, we can access Hub data using the RDxxxx and WRxxxx instructions. For very
large tables/data we can incorporate external data using the FILE directive.

SFX1 FILE "BABY.WAV"
SFX1x DATA 0

Defining Tasks
In order for a PropBASIC program to use two or more cogs we must define TASKs to handle the
"background" processes. If you've ever programmed the BASIC Stamp you know how frustrating it is to
have to wait around for a serial byte to come in. In SX/B we could use interrupts to create a background
serial buffer, but that could be tedious, and many didn't try.

Well, in the Propeller we can simply spawn the physical serial input to another processor using Hub
variables to hold everything. The TASK definition is simple but needs to be in place before the task can
be started.

SERIAL_RX TASK

Local (Cog) Variables
The variables we use in our program and in tasks are local to the cog and can only be defined as Longs.
As with Hub variables, we can also declare arrays and pre-assign values. Here's a typical example:

idx VAR Long

PropBASIC creates several local variables for use in the Assembly code generated by the compiler, as
well as for passing parameters back-and-forth to subroutines and functions. In the compiled output you'll
find five variables, __temp1 through __temp5 that are used in the code generated for PropBASIC
keywords. We can use these variables, but with some caution, as they may change if a keyword is used
between accesses. I tend to favor using the __param1 through __param4 variables when I can. These
are only used when passing parameters and do not get modified by the code generated for PropBASIC
keywords.

Declaring Subroutines and Functions
I stated earlier that PropBASIC is a single-pass compiler, which means it makes no attempt to optimize
the output code. The good news is that we can learn Propeller Assembly tricks by examining the output
and minimize code space by using custom subroutines and functions.

In the early days of SX/B (and I'm betting it will happen in PropBASIC, too), some programmers ran
themselves out of code space writing seemingly innocuous code. The PAUSE instruction, for example, is
used in most programs. Let's say we use PAUSE 100. The PASM output for that instruction is this:

 mov __temp1, cnt
 adds __temp1, _1mSec
 mov __temp2, #100

Copyright © Nuts&Volts Magazine BASIC Propeller Programming March 2010 Page 7 of 11

__L001
 waitcnt __temp1, _1mSec
 djnz __temp2, #__L001

Okay, it doesn't look like much but if that code is generated for every appearance of PAUSE we can chew
through the cog code space pretty quickly. This is easily overcome by encapsulating PAUSE in a
subroutine. As I did in SX/B, my shell for PAUSE is called DELAY_MS.

DELAY_MS SUB 1

We only need to pass one parameter because the range of the 32-bit values of the Propeller variables
allow for very long delays (two billion plus milliseconds is a looonng time).

For those of you coming from SX/B there is a slight difference in the FUNC declaration. In January, after
SIRCS project, a Propeller forum member asked for a translation of that functionality to PropBASIC. You
may remember that my SIRCS object could return the IR code bits as well as the bit count. PropBASIC
doesn't care how many parameters are coming back from a function (typically just one), only how many
parameters are passed to it, hence the definition is:

SIRCS_RX FUNC 0

The Main Program
The body of a simple LED blinker program might look something like this:

PROGRAM Start

Start:
 FOR idx = 1 TO 3
 LED = IsOn
 DELAY_MS OnTime
 LED = IsOff
 DELAY_MS OffTime
 NEXT
 DELAY_MS 1_000
 GOTO Start

Let me explain the PROGRAM directive. In addition to indicating the starting point of our code this
directive provides the location for the auto-generated start-up code. In the Propeller the start-up code is
very simple, setting the IO pin directions and states before jumping to the label indicated in the directive.

As you can see, the code is pure BASIC, every bit as easy to understand PBASIC, SX/B, or any other
variant we've ever dealt with.

Fleshing Out Subroutines and Functions
At the end of the listing is where we'll place the working code for our subroutines and functions. For the
DELAY_MS subroutine we defined earlier the code is this simple:

SUB DELAY_MS
 PAUSE __param1
 ENDSUB

As in any other language, one subroutine can call another. In my programs that need to send data to a
terminal you'll find these two subroutines:

Copyright © Nuts&Volts Magazine BASIC Propeller Programming March 2010 Page 8 of 11

SUB TX_STR

 strAddr VAR __param2
 strChar VAR __param3

 strAddr = __param1

 DO
 RDBYTE strAddr, strChar
 IF strChar = 0 THEN EXIT
 TX_BYTE strChar
 INC strAddr
 LOOP
 ENDSUB

SUB TX_BYTE
 SEROUT TX, Baud, __param1
 ENDSUB

The second subroutine is simply a shell for SEROUT. The first is used to send a string to the serial port.
When calling TX_STR the address of the string is passed in __param1 and captured by the routine.
Since we'll need __param1 to send a character to TX_BYTE we use __param2 and __param3 for internal
work.

The reason I don't just declare new variables is that everything exists in RAM when using the Propeller,
so it's a good habit to minimize variable declarations by using the __paramx variables when possible. A
new variable that we don't declare frees up space for an Assembly instruction.

You probably noticed that the code uses RDBYTE to retrieve a character from the string. PropBASIC
stores all strings, even those we declare inline, in the Hub RAM to conserve cog space. Of course, we
create strings manually using the DATA directive:

Banner DATA "PropBASIC!", 0

Function code often looks just like subroutine code except that it is enclosed in a FUNC..ENDFUNC block
and uses RETURN just before ENDFUNC to send one or more parameters back to the caller. Here's the
PropBASIC version of the SIRCS receiver function that I mentioned earlier.

FUNC GET_SIRCS

 irCode VAR __param1
 irBits VAR __param2

 COUNTERA NEG_DETECT, IR, 0, 1
 COUNTERB FREE_RUN, 0, 0, 1

Wait_Start:
 WAITPEQ IR, IR
 PHSA = 0
 WAITPNE IR, IR
 PHSB = 0
 WAITPEQ IR, IR
 IF PHSA < BIT_S THEN Wait_Start

 irCode = 0
 irBits = 0

Copyright © Nuts&Volts Magazine BASIC Propeller Programming March 2010 Page 9 of 11

Check_Frame:
 IF PHSB > MS_044 THEN IR_Done

Wait_Bit:
 IF IR = 1 THEN Check_Frame
 PHSA = 0
 WAITPEQ IR, IR
 irCode = irCode >> 1

Measure_Bit:
 IF PHSA > BIT_1 THEN
 irCode = irCode | $8000_0000
 ENDIF
 INC irBits
 IF irBits = 20 THEN IR_Done
 GOTO Check_Frame

IR_Done:
 __temp1 = 32 - irBits
 irCode = irCode >> __temp1

 RETURN irCode, irBits
 ENDFUNC

I think you'll agree that this is pretty straightforward, and as it is ultimately compiled to pure Assembly
code it runs full speed. So... if you've been wanting to experiment with other IR protocols, perhaps RC-5,
now you have some high-level code to start with (see sircs_rx.pbas)

I should point out, too, that PropBASIC includes some Spin and PASM keywords. In the SIRCS example
you can see that I'm using WAITPEQ and WAITPNE just as in PASM.

Fleshing Out Tasks
Since a task actually runs in a separate cog its construction is a little more involved than a subroutine or
function. In fact, as a task is its own program we can – and sometimes must – declare subroutines and
functions that run only within the task. All of those declarations and code elements will exist within the
TASK..ENDTASK block.

Let's create that "background" serial input task that I suggested earlier. What we want to do is have a cog
monitor the RX line and when something comes in write that byte to a circular buffer that can be
accessed by another cog. To manage the buffer we need two variables: a head pointer which is the next
open position in the buffer to write, and a tail pointer which is the next position in the buffer to read. When
the buffer is empty the head and tail will be equal.

Here's the code for that task:

TASK SERIAL_RX

 rxb VAR __param1
 hPntr VAR __param2

 DO
 SERIN RX, Baud, rxb
 RDBYTE rxHead, hPntr
 WRBYTE rxBuffer(hPntr), rxb
 INC hPntr

Copyright © Nuts&Volts Magazine BASIC Propeller Programming March 2010 Page 10 of 11

 hPntr = hPntr & $3F
 WRBYTE rxHead, hPntr
 LOOP

 ENDTASK

Yep, that's the whole thing. Remember, tasks make use of CON, PIN, and HUB declarations, and we
have all of those elements here. At the top of the loop we wait for a byte using SERIN – just as we've
done in PBASIC and SX/B. The difference here is that the task will be launched into its own cog and
waiting for a serial byte in that other cog won't block the main program (unless we let it).

After a byte arrives we retrieve the current value of the head pointer using RDBYTE and then use it as
the offset into rxBuffer so that we can store the new serial input using WRBYTE. The local copy of the
head pointer is incremented and ANDed with $3F to keep it within the legal range of the buffer. This
value is then written back to the Hub for use by the caller.

There are a couple ways to start a task, though we normally use COGSTART.

 COGSTART SERIAL_RX

That's all it takes. We may want to wait a few milliseconds before attempting to access data provided by
the task; this allows plenty of time for the other cog to get up and running.

One final note on the TASK..ENDTASK block. The PropBASIC compiler will create a Spin file with the
name of the task. This means we have to be a little careful with naming tasks so that we don't overwrite
regular Spin programs that may live in the same folder.

Okay, so now we have a means of receiving and buffering serial bytes, how do we use them in our main
program? What we'll do is create a function that retrieves a byte from the buffer.

FUNC RX_BYTE

 rxh VAR __param1
 rxt VAR __param2
 rxchar VAR __param3

 DO
 RDBYTE rxHead, rxh
 RDBYTE rxTail, rxt
 LOOP UNTIL rxh <> rxt

 RDBYTE rxBuffer(rxt), rxchar
 INC rxt
 rxt = rxt & $3F
 WRBYTE rxTail, rxt
 RETURN rxchar
 ENDFUNC

The upper loop retrieves and compares the values of the head and tail pointers; when these values are
equal the buffer is empty. As soon as they differ we can use the tail pointer as an index into the buffer
and grab a byte from it. And just as we did with the head pointer we update the tail pointer and save it
back to the Hub.

Since we took the trouble to write a background serial buffer let's free ourselves from not being blocked
when the buffer is empty. Here's a function that will return the number of bytes waiting in the serial buffer;

Copyright © Nuts&Volts Magazine BASIC Propeller Programming March 2010 Page 11 of 11

if zero the buffer is empty and we can skip calling RX_BYTE which would cause us to wait for something
to arrive.

FUNC RX_CHECK

 head VAR __param1
 tail VAR __param2
 bufcnt VAR __param3

 RDBYTE rxHead, head
 RDBYTE rxTail, tail
 IF head >= tail THEN
 bufcnt = head - tail
 ELSE
 bufcnt = tail - head
 ENDIF
 RETURN bufcnt
 ENDFUNC

This should be pretty obvious; we're returning the difference between the head and tail buffers. The
buffer is circular and the tail chases the head, so we use IF..THEN to prevent returning a negative value
when the head pointer has wrapped around past zero and is less than the tail pointer.

Assembly, Anyone?
Most of us enjoy compilers because they make writing programs faster and keep us from the nitty-gritty
details of Assembly. Still, there are times when using Assembly is helpful. In the PropBASIC we can
include inline Assembly using an ASM..ENDASM block, or one line at a time using \. PropBASIC
generates very nice code so we won't need to use inline Assembly often, but it's comforting to know that
we can if we choose to do so.

Let's Wrap It Up
In one issue I can't cover every aspect of PropBASIC, but I think by now you have an idea of what it is
and how to get started with it. As with its SX/B predecessor, PropBASIC includes conditional compilation
directives, and the ability to include external assembly and PropBASIC files. It really does have a lot of
muscle for a first-generation product – and you can't beat the price ($0).

The Future of PropBASIC
In a word: exciting. For those of us that use SX/B we'll tell you that it started out with very humble
beginnings and grew into an extremely nice tool. PropBASIC 1.0 is light years ahead of SX/B 1.0 in
terms of capability and will just get better. It's natural that the language will expand as we all spend more
time with it and offer suggestions to Bean, and the migration to LMM will let us create very large
programs, yet still running at the speed of Assembly.

So... if you've been waiting for BASIC to play with the Propeller, your wait is over. No more excuses
because the compiler is free. Come on, jump on – the ride will be fun. I promise.

Until next time, have fun and keep spinning and winning with the Propeller and PropBASIC.

Resources

Jon Williams
jwilliams@efx-tek.com

Parallax, Inc.
www.parallax.com

