
Copyright © Nuts&Volts Magazine The Joy of Joysticks September 2010 Page 1 of 14

The Joy of Joysticks
By Jon Williams

For Nuts & Volts Magazine, Column 8, September 2010

I think it’s fair to say that the joystick may be the first user input device connected to a computer that took
us beyond the keyboard – games are far more fun with a stick in our hand than hunting for keys, right?
The first joysticks, of course, were simply made up of switches pressed by a plate connected to the stick.
Then came analog joysticks which were built up with two potentiometers mechanically linked at a 90-
degree angle, one pot for each axis. The original PC joysticks we easy to connect to microcontrollers
without hacking. With the proliferation of USB ports, though, analog joysticks changed their interface and
are no longer microcontroller friendly. Darn....

Game On!
If you’ve played any video game console in the last 10 years you’ve no doubt had the opportunity to place
your thumbs on the controller’s mini joysticks and go crazy with your friends. Until recently, those mini
joysticks, with their cute, mushroom-shaped caps weren’t very easy to come by and, when you could find
them, they were pricey – a few years ago I paid about $10 each.

Well, that’s not the case anymore. Parallax offers a version (#27800) that we can plug into solderless
breadboards and Nick over at Gadget Gangster is offering them as raw parts that we can build into
projects. So the hardware this month is a Propeller Platform module that holds two of those mini
joysticks, an ADC to read them, and some other bits that we can use in a variety of projects. Figure 1
shows my completed prototype.

Figure 1

Copyright © Nuts&Volts Magazine The Joy of Joysticks September 2010 Page 2 of 14

Using the MCP3204
The mini joysticks are in fact two 10K potentiometers that are mechanically linked together such that one
changes with X-axis movement, the other with Y-axis movement. With two joysticks we’ll need a four-
channel ADC. We could use an ADC0834 but the MCP3204 seems to be popular amongst Propeller
users so I thought I’d give it a whirl.

Figure 2 shows the connections between the joysticks and the MCP3204, a four-channel, 12-bit ADC.
The MCP3204 has four pins that form the communication buss to the host microcontroller, but the
addition of a 2.2K resistor allows us to cut that down to three. The resistor protects the Propeller pin from
a short circuit when DOUT is an output, the IO pin is an output, and the two are in opposite states (one
high, one low).

Figure 2

The process of reading a channel value from the MCP3204 requires these steps:

1. take the /CS line low
2. output a 5-bit configuration word
3. read 13 bits from the ADC (null plus 12 bits)
4. return the /CS line high to deselect

The MCP3204 will handle very high-speed transactions and we could write a driver in Assembly but,
really, there’s no need for most applications. I’ve created a simple object, written completely in Spin, that
will handle reading any of the channels in the two modes that are supported (single-ended and
differential).

The MCP3204 object has methods to setup the IO pins used by the circuit and two variants that will read
the value of a channel. The init() method takes care of the IO pins and places the ‘3204 in the
deselected state:

Copyright © Nuts&Volts Magazine The Joy of Joysticks September 2010 Page 3 of 14

pub init(cspin, clkpin, diopin)

 cs := cspin
 outa[cs] := 1
 dira[cs] := 1

 clk := clkpin
 outa[clk] := 0
 dira[clk] := 1

 dio := diopin

As you can see, we pass the chip select pin, the clock pin, and the data IO pin to the init() method. The
/CS pin is set to output and high to deselect the ‘3204 while the clock pin is set to output and low; the data
IO pin is left in input mode until we need it.

Astute readers (that would be you!) will ask, “Why do we need to pass pin numbers when they won’t
change in a program? Can’t we just set them as constants?” We could, but it’s a bad idea for reusable
objects like this. If we used constants for the pin numbers we’d be forced to either, 1) always use the
same pin numbers in every design (impractical), or 2) keep multiple copies of the object with different pin
numbers which is also impractical when it comes to maintenance and upgrades. So, the lesson here is
this: when designing a Propeller object keep it concise, yet flexible enough to be re-used in any of your
designs. This will make your life simpler and those downloading your code from the Object Exchange
(obex.parallax.com) will thank you.

There are two variations of read methods and, in fact, one calls the other. The reason for two methods is
to accommodate different programming styles. The first variation expects the channel number (0 to 3)
and the mode (1 for single-ended, 0 for differential).

pub read(ch, m) | mux

 mux := %1_0000 | ((m & 1) << 3) {
 } | (ch & %11)
 return readx(mux)

The channel and mode settings are used to create a 5-bit configuration word with masking and bit
shifting; this value will passed to the readx() method that actually does the heavy lifting.

pub readx(mux) | level

 outa[cs] := 0
 dira[dio] := 1

 mux <<= constant(32-5)
 repeat 5
 outa[dio] := (mux <-= 1) & 1
 outa[clk] := 1
 outa[clk] := 0

 dira[dio] := 0
 level := 0
 repeat 13
 outa[clk] := 1
 outa[clk] := 0
 level := (level << 1) | ina[dio]

 outa[cs] := 1

 return (level & $FFF)

Copyright © Nuts&Volts Magazine The Joy of Joysticks September 2010 Page 4 of 14

If this code looks a little bit familiar, well, it should. It’s really a combination of code that simulates the
PBASIC SHIFTOUT and SHIFTIN instructions; we used code identical the latter portion when reading the
74x165 shift-register on the encoder board (Nuts & Volts, May 2010). And just a note on my method
naming convention: when I have two methods that are similar, and one is a simplified interface into the
other, the method that really does the work tends to get appended with “x” (for explicit).

We start by taking the /CS line low to activate the ‘3204. Remember that the init() method made this pin
an output so all we have to do is set the level by writing to the outa[] register. The next step is to put
the DIO line into output mode so that we can write the configuration word to the ‘3204.

The configuration word is shifted out MSB first. The cleanest way to do this in Spin is to move the MSB of
the configuration word into bit 31; we do this with a right shift (of 27 bits). Next, we drop into a repeat loop
that starts by rotating bit 31 into bit 0; bit 0 is then moved to the DIO pin and the clock pulsed high then
low to latch the bit into the ‘3204.

To receive the channel value from the ADC we switch the DIO line to input mode, clear the workspace
variable, and then drop into a repeat loop that shifts the bits in. As you can see the loop runs 13 times;
the reason for this is that the ‘3204 outputs a null bit before the first bit (MSB) of the channel reading.

To shift the ADC bits in the clock line is pulsed high, then low; we’ll sample the line after the clock pulse
(MSBPOST). The bits arrive MSB first so the work value is shifted left before the DIO line is sampled and
copied into bit 0.

Finally, the /CS line is taken back high to deselect the ADC and we can return the value to the calling
program. Note that while this code is setup for the ‘3204 a very simple change will allow it to work with
the MCP3208 as well; both devices use a 5-bit configuration word.

Okay, then, let’s put it to use. I’m a very big believer in creating hardware test programs before moving
on to the actual application (more on this later), and part of the test program for the board I made will read
and display the analog joystick inputs. Figure 3 shows the output of this code in PST.

Figure 3

Copyright © Nuts&Volts Magazine The Joy of Joysticks September 2010 Page 5 of 14

Do you see a problem? These readings are with the joysticks at neutral, and in a perfect world all would
read 2048 as this is the half-way point for a 12-bit ADC. One of my desires is to control servos with the
joysticks so a little extra effort will be required to make this work cleanly.

The first thing to do is nullify the neutral position values; the autocal() method does this:

pub autocal | idx, raw

 repeat idx from 0 to 3
 raw := adc.read(idx, adc#SE) >> 4
 ofs[idx] := JOY_CNTR - raw

There is actually two things happening here: the channel is read (in single-ended mode) and then shifted
right by four bits to reduce the ADC resolution down to eight bits; the pots we’re using are not precision
units and 12 bits is excessive. By reducing the resolution we can nearly eliminate the LSB “bouncing” of
the input readings. The second step is to save the offset from expected center (128 for eight bits) in an
array that can be applied to future readings.

So let’s say that we want to control four servos with the headers on the board; the final step would be to
convert the joystick channel reading to the range required by the servo driver; this value will usually be
expressed in microseconds, and 1000 to 2000 is the standard range. The joy2servo() method takes an
eight-bit joystick reading and, using algebra, converts it to a standard servo position value.

pub joy2servo(jpos) | delta, spos

 jpos := JOY_MIN #> jpos <# JOY_MAX

 delta := (jpos - JOY_MIN) * 1000 {
 } / (JOY_MAX - JOY_MIN)

 spos := ((SVO_MAX - SVO_MIN) {
 } * delta / 1000) + SVO_MIN

 return spos

The first step ensures that the input value in jpos is legal, that is, it fits within the eight-bit range we should
expect from the joystick. With the variations in the pots I decided to truncate the readings by 15 on each
end, so jpos will fall between 15 (JOY_MIN) and 240 (JOY_MAX).

The next step converts jpos to a percentage. For example, if the joystick is in the neutral position (jpos =
128) then delta will be 50%. Since we’re dealing with integers the percentage is multiplied by 1000 to
prevent rounding errors.

The final step translates the input delta to a servo position value, as defined by the minimum and
maximum servo position constants. As you can see, the calculated position delta is applied to the span of
the servo range and then divided by 1000 to get to the value within the span; this is added to the
minimum value for the range to get the proper servo position value. Figure 4 shows the output from
jm_joystick_servo_demo.spin. As you can see, the calibration has taken care of getting the neutral
position where it needs to be, and the center value for a typical servo is properly calculated. The program
includes a mini servo driver which allows us to control four servos from the joysticks.

Copyright © Nuts&Volts Magazine The Joy of Joysticks September 2010 Page 6 of 14

Figure 4

Pulse Position Magic
A couple years ago I was visiting my friend Dan at a Hollywood special effects shop, and he showed me a
box of VEX transmitters that his company had purchased from All Electronics when the price was so low
(about $30 – and you can still find these units on eBay). Dan was gutting the joysticks from the
transmitters for use in animatronics controls, but for many projects, there’s no need to do this.

Most RC transmitters, including the one from VEX, have a trainer connection that emits a pulse stream
that defines the position data of the joysticks and buttons. Figure 5 shows the stream from the six-
channel VEX transmitter when connected to a microcontroller. The actual output of the VEX is open-
collector, so the input to the micro needs a pull-up.

In order to provide the greatest flexibility I use the circuit shown in Figure 6 on the project board. Two
jumpers let me configure the 3-pin PPM port; I can provide power to the device (e.g., a VEX receiver) and
configure the input as pulled-up or pulled down as required. The purpose of the 2.2K series resistor is to
limit the current into the Propeller IO pin for those devices that provide a driven output (5V max).

Copyright © Nuts&Volts Magazine The Joy of Joysticks September 2010 Page 7 of 14

Figure 5

Figure 6

Copyright © Nuts&Volts Magazine The Joy of Joysticks September 2010 Page 8 of 14

The VEX stream begins with a nine-millisecond sync pulse and is followed by six channel pulses. All of
the pulses are separated by an idle period of about 390 microseconds. The value for a channel is
determined by measuring the period from one falling edge, through the idle period, to the next falling
edge. In the past I’ve measured pulses with the Propeller counters, but this time we’ll need to measure
the low and high portions of the signal, and we’ll want to ensure that a shorted input or disconnected
cable does not cause the values into the system to become corrupted.

The only way to measure the PPM pulse stream with precision is to use Assembly code. I’ll admit that it
is a little involved, but really not too bad when broken down piece-by-piece. Let’s jump in.

At the very top we’re going to start by writing a flag indicating there is no detected PPM stream, then we’ll
monitor the input for a valid sync pulse.

vexin mov dira, #0
 wrlong NO, flagpntr

findsync mov pwidth, #0
 mov timer, US_001
 waitpne pmask, pmask
 add timer, cnt
:loop waitcnt timer, US_001
 add pwidth, #1
 test pmask, ina wz
 if_z jmp #:loop
 cmp pwidth, SYNC wc, wz
 if_b jmp #vexin

At findsync the pulse width variable is cleared and a timer is setup for one-microsecond delays with
waitcnt. Then we wait for the input to be low using waitpne. Note that this is the only place in the code
where we will use a pin wait instruction; from this point forward we will manually scan the input so that we
can do it on a timed interval (1us).

Once a low on the input is detected the timer is started and drops into a loop, incrementing the pulse
width measurement every microsecond until the line goes back high. We scan the PPM input using the
test instruction with a mask for the input pin (pmask) and the pin inputs register (ina). The test
instruction works exactly like the and instruction but it doesn’t affect the variable in the destination field.
The Z flag is updated with the state of the PPM input and as long as remains true (Z = line is low) the
code will loop and increment the pulse measurement variable. When the input goes high (during the
inter-pulse idle period) the Z flag will be cleared and the code drops into a comparison to check the width
of the pulse. If the pulse we just measured is not a valid sync pulse (for example, we started the code in
the middle of an output stream) then the code jumps back to the top and tries again.

The next section of code monitors and measures the idle period between the sync pulse and the first
channel pulse. The reason we bother measuring is to prevent a disconnected device from locking the
program (since we’re waiting for a low-going leading edge for the channel measurement).

 mov pwidth, #0
chwait test pmask, ina wz
 if_z jmp #getch1
 waitcnt timer, US_001
 add pwidth, #1
 cmp pwidth, #425 wc, wz
 if_b jmp #chwait
 jmp #vexin

As before, the pulse width variable is cleared and the code drops into a small loop that tests the state of
the PPM line. When the line is idle the Z flag will be cleared and we drop through the first jump into a
one-microsecond delay. The idle pulse width is incremented and a comparison is done to ensure that we

Copyright © Nuts&Volts Magazine The Joy of Joysticks September 2010 Page 9 of 14

haven’t lost the signal. If the PPM signal is lost the input will remain high and code is redirected back to
the top of the program where we’ll wait for reconnection and a valid sync pulse.

When things are working as they should, the PPM input will drop after about 390 microseconds – this is
where we start the channel position measurement. This code looks – and is – very easy; it’s actually just
a call to a subroutine and a check on an error flag (stored in C) that can be set by that routine.

getch1 call #getch
 if_c jmp #vexin
 mov ch1us, pwidth

As you can see, this section calls a subroutine called getch which performs the actual channel
measurement and will set the C flag if a measurement error is detected. After returning from the
measurement routine we check the C flag and if it’s set, jump right back to the very top of the program
where the PPM stream detection flag is set to NO (false). This flag can be used by our application to
determine the presence or absence of the PPM stream and take some action based on that status.
Assuming a good measurement, though, we save the channel timing in a holding register and then do the
same operation for the rest of the channels.

The hard work is performed by the getch subroutine.

getch mov pwidth, #0
:looplo waitcnt timer, US_001
 add pwidth, #1
 cmp pwidth, LO_MAX wc, wz
 if_a jmp #badch
 test pmask, ina wz
 if_z jmp #:looplo

:loophi waitcnt timer, US_001
 add pwidth, #1
 cmp pwidth, CH_MAX wc, wz
 if_a jmp #badch
 test pmask, ina wz
 if_nz jmp #:loophi

goodch cmp pwidth, CH_MIN wc, wz
 jmp #getch_ret

badch test $, #1 wc
getch_ret ret

Yeah, this does look a little bit hairy, but as you examine it closely you’ll find it’s divided into two sections:
the first to measure the low portion of the period, the second to measure the idle period which completes
the channel timing.

Again, we start by clearing the timing measurement variable (pwidth) and then doing a one microsecond
delay. The pulse timing is incremented and then compared to a constant that defines the longest valid
low period. We do this so that a short on the PPM input can be detected. If this happens the C flag gets
set and we abort back to the calling code.

This usually won’t happen, though, and we continue timing until the PPM line goes back high for the idle
period. Now we time this while waiting for the line to go back low (the start of the next channel), again,
testing against an established limit. The test during the high period will detect a disconnection of the VEX
device from the circuit. When we return to the calling section the variable called pwidth will contain the
channel value and when all is well the C flag will be cleared.

Copyright © Nuts&Volts Magazine The Joy of Joysticks September 2010 Page 10 of 14

After all of the channels have been measured we can write the values to the hub for access by the
application.

report mov pntr, pospntr
 wrword ch1us, pntr
 add pntr, #2
 wrword ch2us, pntr
 add pntr, #2
 wrword ch3us, pntr
 add pntr, #2
 wrword ch4us, pntr
 add pntr, #2
 wrword ch5us, pntr
 add pntr, #2
 wrword ch6us, pntr

 wrlong YES, flagpntr
 jmp #findsync

This is pretty straightforward: we setup a pointer to the hub array (of words) that holds the channel values
and then transfer the readings from the cog. At the end we write YES (true) to the flag that indicates PPM
status to alert the application that the stream is present and the position values are fresh.

Figure 7 shows the output from a test program that reads and displays the PPM stream status and
channel values.

Figure 7

Copyright © Nuts&Volts Magazine The Joy of Joysticks September 2010 Page 11 of 14

Testing 1, 2, 3....
I often see posts in the Propeller support forum that go something like this: “I built my hardware, I wrote
my software – it doesn't work. What do I do?”

Test. Test. Test. The good news is that the Propeller architecture helps us. Earlier this year my friend
and I created and released a Propeller-based WAV audio player (the EFX-TEK AP-16+) that is designed
for museums, theme parks, and attraction-based industries like Halloween. It’s a beast. Because of the
variability of the user base it has lots of flexibility in its design which means lots of IO and a fairly-tricky
PCB.

While John (who also worked for Parallax) was creating the PCB for the first prototype, I wrote a test
program to check each section of the board – this was well before a single line of application code was
written. Of course, that’s a bit of a fib, isn’t it? You see, a large portion of the code used in testing moved
right into the final application. In fact, as I refined the test program I was refining portions of the
application code.

The ability to program the Propeller through a serial port means that we can create a self-hosted test
program that uses a simple terminal. As an example for you to play with, I created a test program for the
this month’s project board. When that program starts it presents a menu using PST (see Figure 8) that
lets us access/test each section of the board.

Figure 8
Here’s the main program loop:

pub main | c
 term.start(RX, TX, %0000, 115_200)
 rgled.initx(R_LED, G_LED, 50, OFF)
 adc.init(CS, CLK, DIO)
 ppm.init(PPM_IN, 1500)
 eeprom.init(SCL, SDA)

 pause(1)

Copyright © Nuts&Volts Magazine The Joy of Joysticks September 2010 Page 12 of 14

 repeat
 term.tx(CLS)
 term.str(@Menu)
 term.rxflush
 c := term.rx
 case c
 "1" : showdigins
 "2" : demoled
 "3" : readjoysticks
 "4" : readppm
 "5" : testeeprom

Once the objects used by the board are initialized we drop into a loop that displays the main menu and
waits for input. Based on that input the program will jump to one of the test routines.

The menu is defined as a string and is stored in a dat section of the program like this:

Menu byte "Waldo-4x Hardware Checkout", CR
 byte "==========================", CR
 byte CR
 byte "[1] Digital Inputs ", CR
 byte "[2] Bi-Color LED ", CR
 byte "[3] Read Joysticks ", CR
 byte "[4] Read PPM Stream ", CR
 byte "[5] External EEPROM ", CR
 byte 0

Note that the menu string can be spread across lines which allows us to “see” it in the listing. Note, too,
that it must be terminated with a zero; we’re actually defining the menu as a single z-string and if we omit
this the display could end up a mess. The listing above shows that displaying the menu is simply a
matter of passing the address (@) of the menu data to the str() method of the terminal object.

We can have sub-menus in the test sections, or run code in a simple loop; like this code that displays the
values from the VEX PPM stream.

pub readppm | idx, c

 term.rxflush
 term.tx(CLS)
 term.str(string("PPM Stream", CR, {
 } "-- press X to quit"))

 repeat
 term.str(string(HOME, LF, LF, LF))
 term.str(string("Active "))
 if (ppm.status == false)
 term.str(string("No ", CR))
 else
 term.str(string("Yes ", CR, CR))
 repeat idx from 1 to 6
 term.str(string("Ch"))
 term.tx("0" + idx)
 term.str(string(" "))
 term.dec(ppm.read(idx))
 term.tx(CLREOL)
 term.tx(CR)

 c := term.rxtime(50)
 if (ucase(c) == "X")
 quit

Copyright © Nuts&Volts Magazine The Joy of Joysticks September 2010 Page 13 of 14

At the top we clear the terminal RX buffer to remove extraneous keys, remove the main menu, and then
display a title string for this test (and note on how exit). The rest of the code is contained in a loop that
displays the VEX connection status and channel values.

At the bottom you’ll see a neat trick with the rxtime() method. This method lets us check for input from
the user, but only for a specified period (in milliseconds). If no key is pressed in this time the method
returns with a value of -1 (not a valid key). We check the return value for “X” and when that’s detected,
abort back to the main menu. Until that time, the rxtime() method provides a nice 50-millisecond update
rate for the display – it’s a 2-for-1 deal.

Study the test program and put it to use with your own projects. Remember, the time you spend working
on test code is not wasted because this code checks your hardware (you need this) and can then be
moved into your final application. That test program I created for the AP-16+ prototype is now used on
the other end of the product cycle as a unit tester that is run before we load the application code and ship
to our customer.

Coding and Publishing are Difficult!
My friends at Nuts & Volts do a spectacular job publishing this (and other) magazines for people like you
and me. It’s very hard work, taking the frequently wacky style of programmers and putting it into print. I
mention this because after my last column a misguided young man (Ah, to be young and stupid....) took
me to task for not providing comments in my code (as it appears in print).

Of course, I comment my all of my code, in fact, like most professional programmers, I take pride in the
quality of my work and the information that goes into it. That said, the two-column format that is preferred
by Nuts & Volts and other publications just doesn’t lend itself to long program lines so, of necessity, I strip
out the inline comments for the code that is embedded in the article text.

I realize that this stuff can at times get a little heavy, especially the Assembly sections. So those of you
really wanting to study the code as you read my column (or others, for that matter) should open the code
—that can be downloaded from Nuts & Volts—in your programming editor as you’re reading the
magazine. Studying the code comments along with the article text will really help solidify your
understanding of the project.

Until next time, then, keep spinning and winning with the Propeller.

Resources

Jon “JonnyMac” Williams
jwilliams@efx-tek.com

Parallax, Inc.
www.parallax.com

Gadget Gangster
www.gadgetgangster.com
– Propeller Platform kits and accessories

Copyright © Nuts&Volts Magazine The Joy of Joysticks September 2010 Page 14 of 14

Bill of Materials

C1-C4 0.01uF Mouser 80-C315C103M5U
C5 220 Mouser 140-L10V220-RC
JP1-JP4 0.1 M-STRT Mouser 517-6111TG *
LED1 G/R bi-color Mouser 604-WP937EGW
Q1 2N3904 Mouser 610-2N3904
R1-R4 100 Mouser 291-100-RC
R5-R6 470 Mouser 291-470-RC
R7-R8 2.2K Mouser 291-2.2K-RC
R9 10K Mouser 291-10K-RC
RN1 10K Mouser 81-RGLD8X103J
RX1-RX2 10K Dual Gadget Gangster RKJXK122000D
SW1 DIP-6x Mouser 611-BD06
SW2 6mm NO Mouser 653-B3F-1022
S-U1 14-pin DIP Mouser 571-1-390261-3
U1 MCP3204 Mouser 579-MCP3204-CI/P
X1-X10 0.1 M-STRT Mouser 517-6111TG *
PCB ExpressPCB
Parts Kit Gadget Gangster

* The 517-6111TG is a 40-pin component; only three are required for the project (split as needed).

