
Column #134: Spin Baby Spin

The Nuts and Volts of BASIC Stamps 2006

Column #134, June 2006 by Jon Williams:

Spin Baby Spin

Well, this month we're going to wrap-up our intro series on the Propeller multi-controller,
and I'm going to show you what I think is the best feature of the chip: the ability to run
multiple processors at the same time, even when programmed in the high-level Spin
programming language.

As I pointed out last month, I really don't have the patience to become very proficient at
assembly language, and that fact has probably held me back on some projects. Not any more;
the Propeller lets me (and you!) create complex, multi-processor projects without having to
learn assembly. Why would we want to do that? Well, let's say we have a device that needs
to monitor and process sensors; how cool would it be to dedicate one of the Propeller's cogs to
"background" monitoring of the sensors while another – perhaps the "foreground" program –
takes care of real-time data display. That's what we're going to do this month, albeit with a
fairly simple program that reads a potentiometer (in its own cog) and displays the value on a
serial LCD.

To read the potentiometer we're going to create an object called rctime that mimics the
BASIC Stamp's RCTIME instruction. Easy enough, right? And as we're writing the code, we
might as well include some convenient features, like the ability to run completely independent
of our "foreground" program, and to scale the output value so the foreground doesn't have to.

Enough chit-chat, let's dive right in. Extract the archive and open the rctime.spin file, which I
should mention, was originally created by my colleague Beau Schwabe (also a long-time
BASIC Stamp user). The heart of this object is the rctime method.

 Column #134: Spin Baby Spin

The Nuts and Volts of BASIC Stamps 2006

PUB rctime(pin, state, zofs, div, rcAddr) | rc_temp

 if lookdown(pin : 0..27)
 state := 0 #> state <#1
 zofs #>= 0
 div #>= 1

 repeat
 rc_temp~
 outa[pin] := state
 dira[pin]~
 waitcnt(clkfreq / 2000 + cnt)
 dira[pin]~
 rc_temp := cnt
 waitpne(state << pin, |< pin, 0)
 rc_temp := ||(cnt - rc_temp)
 rc_temp := (rc_temp - zofs) #> 0
 rc_temp /= div

 long[rcAddr] := rc_temp

 if mode == 0
 quit

We're going to make the rctime method public; this will let us call it manually (like we do
with RCTIME in the BS2), or to launch it into its own cog with the start method (we'll get to
that shortly).

As you can see, this method has several parameters: pin (the I/O pin we'll use), state (the
initial state, 0 or 1, of the capacitor in the RC circuit), zofs (zero offset that is used to
compensate for the effect of the series pin-protection resistor), div (a divisor to scale the
output) and, finally, rcAddr (the address of the variable that the method will update). We also
have a temporary variable, rc_temp, that will be used as the storage space for the RC timing
value before it is copied to the target variable.

Let's look the code as if called manually – like we do with the BASIC Stamp. Using the
"standard" circuit as shown in Figure 134.1, and reading the value without a zero offset or
scaling divisor, the call to the rctime method looks like this:

 pot.rctime(0, 1, 0, 1, @potVal)

Column #134: Spin Baby Spin

The Nuts and Volts of BASIC Stamps 2006

Note that we're passing the address of (using the @ operator) the target variable instead of
copying the return value of the rctime method – there's a very good reason for this. More on
that later.

Figure 134.1: Typical RC-Time Circuit

Now have a look at the rctime method code. We start by qualifying the pin input; this is a
choice, of course, and I think it's a good idea not to connect an RC circuit to the EEPROM
I2C lines or Propeller programming pins, so using 0..27 with lookdown prevents that.
Remember that in Spin, lookdown returns a 1 to N value, not 0 to N-1 as with LOOKDOWN
in PBASIC (or the Propeller's lookdownz method). By using lookdown, any non-zero return
means that pin is within range; this is one of my favorite tricks with Spin, and it's certainly
more elegant than:

 if (pin => 0) and (pin =< 27)

… especially as lookdown (and lookdownz) allows a compound list with comma-delimited
elements.

With the pin qualified the next step is to make sure that the state, the zero offset, and the
divisor are legal. This is very easily handled with the limit operators.

At this point we get into the mechanics of the RC measurement. The first step is to clear the
work variable, rc_temp, and then make pin an output at the desired state; this will charge (1)
or discharge (0) the RC circuit. Using a 220-ohm series resistor and a 0.1 uF cap, the time
required for charge/discharge is 110 uS; we'll go ahead and use 500 uS to account for
component variations or a larger series resistor. Once the capacitor is charged we make the
pin an input, copy the system counter (cnt) value into rc_temp, and then wait for the pin state
to change (this happens at ½ vdd).

 Column #134: Spin Baby Spin

The Nuts and Volts of BASIC Stamps 2006

To monitor the state change we'll use the waitpne (wait until pins are not equal) method. This
method lets us hold the program until one or more selected pins are not equal to the target
value given. The syntax for waitpne is:

 waitpne(target, mask, 0)

… where target is the desired state of the I/O pins, mask is the value to be AND'd with the
Propeller's inputs (the result will be compared to target), and 0 is for the port A pins. When
the Propeller's pins AND'd with mask no longer match the target value, the method will fall
through. Our program is just looking at one pin, and yet we can monitor as many as we need,
up to 32. If, for example, we wanted to monitor a 4-bit binary switch connected to A3..A0,
and wanted to hold the program when the switch was set to %1010, the waitpne method
would be setup like this:

 waitpne(%1010, %1111, 0)

Note that %1111 is used as the mask so that all four pins, A3..A0, are used in the comparison.

In the rctime method we only need to watch one pin, so we set the target by shifting the
starting capacitor state left by the pin number. The pin mask is created with the decode
operator (|<) – this works by shifting %1 left the number of bits specified (again, the pin
number). If we were using pin A3 for the rctime I/O pin, the mask value would end up as
%1000.

Okay, after the pin state changes we'll subtract the original value of rc_temp from the system
counter to get the number of counts elapsed during the discharge/charge cycle. The absolute
operator (||) is used to keep the return positive (when bit 31 of cnt is set, the value is
considered negative by Spin math operations which are all signed). Now we can subtract the
zero offset and divide the raw value by the divisor. The result is moved (as a long) into the
target address; this is kind of like using POKE in some flavors of BASIC. Note that the target
address is in main RAM; this will let us move the rctime method to its own cog and work in
the background, since all cogs have (shared) access to the main RAM.

Before for we get to that, though, you may be wondering how rctime terminates since all the
code is wrapped in a repeat loop. When rctime gets called manually a global variable that is
part of the object, mode, is left at zero. At the end of the rctime method that variable gets
checked; if it's zero the repeat loop is terminated with quit.

Column #134: Spin Baby Spin

The Nuts and Volts of BASIC Stamps 2006

Now for some real fun… how about we launch the rctime method into its own cog so that it
runs happily "in the background" and constantly updates our target variable. Sound like fun?
– I can tell you that it is.

The start method of the rctime object handles the details:

PUB start(pin, state, zofs, div, rcAddr) : okay

 stop
 mode := 0
 okay := cogon := (cog := �
 cognew(rctime(pin, state, zofs, div, rcAddr), �
 @stack)) > 0
 if okay
 mode := 1

You may find it odd that the first thing the start method does is call the stop method. What
we have to keep straight is that this code is assigned to a single object (pot in our case), and if
we restart that object we need to stop it first. And yes, we can have multiple versions of the
same object in memory at the same time; if we were using them in "background" mode each
would be in its own cog, and we could stop or restart one without affecting any other.

The next step is to clear the mode variable – we don't want to let the top-object think that
rctime is running in its own cog unless that actually happens. And we make that happen with
the cognew method. With cognew we can "launch" rctime into its own cog if a free cog is
available. When that's the case (most of the time it will be), cog, cogon, and okay will get set
to the cog number used by rctime. Once we know that rctime is up and running in its own
cog, we can set mode to 1 to keep the method running and automatically updating our target
variable. This is why we pass the target variable's address: once that's known to the method,
it can update the variable without any further interaction with the "foreground" program. I
told you this was cool stuff.

Here's what this boils down to for us regular folks: we don't have to learn assembly to get
background processes running! How cool is that? With eight cogs at our disposal the world
is brand new and wide open for just about anything we can imagine. I can tell you in all
candor that I've been operating on a lot less sleep now that Spin has kicked in and started
making sense; I've got 12 years of BASIC Stamp programs that I'm reviewing and porting to
the Propeller.

Okay, let's have a look at the "foreground" program (top level object) that takes advantage of
rctime.

 Column #134: Spin Baby Spin

The Nuts and Volts of BASIC Stamps 2006

CON

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 LCD_PIN = 0
 LCD_BAUD = 19_200
 LCD_LINES = 2

 POT_PIN = 1

VAR

 long potVal

OBJ

 lcd : "debug_lcd"
 pot : "rctime"

PUB main

 if lcd.start(LCD_PIN, LCD_BAUD, LCD_LINES)
 lcd.cursor(0)
 lcd.cls
 lcd.backLight(true)
 if pot.start(POT_PIN, 1, 1520, 642, @potVal)
 repeat
 lcd.home
 lcd.decf(potVal, 5)
 waitcnt(clkfreq / 5 + cnt)

As you can see, it's actually quite simple. We'll use a Parallax serial LCD as our output
device. If you prefer the SEETRON BPI-216 display, no problem, I've included an object
called Debug_BPI-216 that has the same methods as Debug_Lcd; all you have to do is change
the baud rate to 9600 and the lcd object file, everything else is handled internally.

Look carefully at the repeat loop after the pot.start method is called. Notice how we don't
ever have to use the pot.rctime method? We don't because the rctime method is running in its
own cog and taking care of things automatically. And no, we don't have to worry about
attempting to read potVal from the main program while rctime is updating it; the Propeller

Column #134: Spin Baby Spin

The Nuts and Volts of BASIC Stamps 2006

hub allows only one cog at a time to access the main system RAM, so the there won't ever be
a collision.

Before we wrap this section you may be wondering about the values 1520 and 642 for the
zofs and div parameters. These values were derived empirically in three steps. The first step
was to run the program with 0 (zofs) and 1 (div). I found on my setup that this returned a
value of 1520 when the pot was turned to the zero position. Where does this come from? –
instruction overhead and the small discharge delay caused by the 220-ohm resistor.

The next step is to insert 1520 into the zofs parameter and run the program again. The zero
position should now be zero. Now we can turn the pot to the max position and note the
output. In my case it was about 64125 (with some small variation due to breadboard noise). I
decided I wanted my pot to read 0 to 99, so I used 642 as the divisor. Step number three is to
check it – bingo, the pot now reads 0 to 99.

Stacking It All Up
Okay, there is one critical technical detail that we have to address before calling it a wrap this
month. When a Spin program is running in its own cog it needs a section of dedicated RAM
– called a stack – to keep track of intermediate values (i.e., used during expression
evaluation). Until the Propeller, determining proper stack size required a bit of luck, if not
outright magic. Some time back I was working with a small device that was multi-threaded,
and the guidance for setting the stack for a new thread was to start big, then reduce the stack
size until the thread crashed. Mmmm, I just didn't feel quite right doing it that way. So why
not just make the stack big and forget about it? Because it's a waste of space, and even with
all the memory available in the Propeller, it is still a small controller and we should use
memory wisely.

Good news: we can use one of the Propeller's cogs to determine the stack usage of another
object. Now, I wish I was clever enough to have come up with this, but I'm not. I am clever
enough to put it to use, though, and so are you, so keep this handy for when you start
developing multi-cog projects. Included in the files is an object called stack_monitor.spin.
This was created by a very sharp guy named Phil Pilgrim. Perhaps Phil's name doesn't ring a
bell, but his work will. As a long-time friend of Parallax he's created some very interesting
products: the M&M sorter, the color sensor AppMod and, recently, the Scribbler
programming GUI. Phil brings his considerable programming skills to the Propeller and
some really neat things are happening.

The stack_monitor is one of those objects that runs in its own cog; this allows it to keep tabs
on a chunk of memory that another object is using as its stack. It must be installed (with its
own start method) in the start method of the object that has the stack, providing the location of

 Column #134: Spin Baby Spin

The Nuts and Volts of BASIC Stamps 2006

the stack, its size, and the MSB and LSB pins (connected to LEDs) that will provide stack
usage output.

Here's how to install it into the rctime object as the first line in the start method:

 stackmon.start(@stack, 32, 23, 16)

This points the array called stack that has an initial size of 32. I'm using the Propeller Demo
Board which has LEDs on pins A23..A16, so that's what I'll use as outputs. Now we go back
to the top object and rerun it. On my system LEDs A19..A16 are lit, indicating the actual
stack usage is 15 longs.

Okay, how does it work? The stack_monitor.start method fills the target stack with a known
pattern (constant value called FILLER) and then launches the monitor method into its own
cog.

PRI monitor(addr, size, ledMsb, ledLsb) | idx, used

 outa[ledMsb..LedLsb]~
 dira[ledMsb..LedLsb]~~

 repeat
 used := 0
 repeat idx from addr to addr + size * 4 step 4
 used -= long[idx] <> FILLER

 outa[ledMsb..LedLsb] := used

As you can see, this method is actually quite small. It starts by clearing the LED pins and
making them outputs before entering an infinite loop. Within the loop the variable, used, is
cleared and then the elements of the stack being monitored are scanned to see if they match
the FILLER pattern. Now here's a really clever bit of code – have a look at the line that
modifies used.

You see how there's a subtraction? This is odd, isn't it, since we actually want to add up the
number of longs used by the object's stack. Well, here's why it works: the right side of the
expression (after -=) will evaluate as true or false. The key is that true is defined as -1
($FFFFFFFF) in Spin, so when we subtract -1, it has the same effect as adding +1.
Subtracting zero (false) has no effect. That's pretty cool, isn't it? I told you Phil was a sharp
guy! Darned nice, too, and very helpful in the Parallax forums.

Column #134: Spin Baby Spin

The Nuts and Volts of BASIC Stamps 2006

Okay, I think that's about enough. After three months of Propeller work you should have
enough to get going – so get going! Remember to be patient with yourself; this is a big
change from PBASIC and a whole lot of power is at your disposal; you just have to learn to
use it. If you have a specific idea that you just can't make work, feel free to send it to me –
we just might make another article out of it!

Until next time, Happy Spinning!

Project Code
Note: Archive Readme and the Top Object File only are shown for each project; the complete
projects with all objects can be downloaded from www.parallax.com.

───────────────────────────────────────
Parallax Propeller Chip Project Archive
───────────────────────────────────────

 Project : "BPI-216_Demo"

Archived : Monday, April 17, 2006 at 7:54:24 AM

 Tool : Propeller Tool version 0.71.5

 BPI-216_Demo.spin
 │
 └──Debug_BPI-216.spin
 │
 ├──BPI-216.spin
 │ │
 │ └──Simple_Serial.spin
 │
 └──Simple_Numbers.spin

────────────────────
Parallax, Inc.
www.parallax.com
support@parallax.com
USA 916.624.8333

'' SEETRON BPI-216 Demo
'' -- translated from SEETRON BPI-216 demo (for BS2) by Jon Williams
'' -- baud is specified as positive; inverted output is handled by BPI-216 object

 Column #134: Spin Baby Spin

The Nuts and Volts of BASIC Stamps 2006

CON

 _clkmode = xtal1 + pll16x ' use crystal x 16
 _xinfreq = 5_000_000

 LCD_PIN = 9
 LCD_BAUD = 9600
 LCD_LINES = 2 ' for compatibility with Serial_Lcd object

OBJ

 lcd : "debug_bpi-216"

PUB main | count

 waitcnt(clkfreq + cnt) ' pause one second for LCD initialization
 if lcd.start(LCD_PIN, LCD_BAUD, LCD_LINES) ' ouput on A1 @ 9600 baud
 lcd.cls
 lcd.str(string("Hello, World!"))
 lcd.gotoxy(0, 1) ' move to second line
 lcd.str(string("..line 2"))
 waitcnt(clkfreq * 2 + cnt) ' wait two seconds
 lcd.cls
 lcd.str(string("Count:"))
 repeat
 lcd.gotoxy(7, 0) ' move to count position
 lcd.dec(count) ' print the count
 count := ++count // 1_000_000_000 ' update count
 waitcnt(clkfreq / 5 + cnt) ' pause 200 ms

Column #134: Spin Baby Spin

The Nuts and Volts of BASIC Stamps 2006

───────────────────────────────────────
Parallax Propeller Chip Project Archive
───────────────────────────────────────

 Project : "RCTime-to-LCD"

Archived : Monday, April 17, 2006 at 7:53:08 AM

 Tool : Propeller Tool version 0.71.5

 RCTime-to-LCD.spin
 │
 ├──Debug_Lcd.spin
 │ │
 │ ├──Serial_Lcd.spin
 │ │ │
 │ │ └──Simple_Serial.spin
 │ │
 │ └──Simple_Numbers.spin
 │
 └──rctime.spin

────────────────────
Parallax, Inc.
www.parallax.com
support@parallax.com
USA 916.624.8333

'' RCTIME to Parallax Serial LCD
'' -- Jon Williams, Parallax
'' -- jwilliams@parallax.com
'' -- Updated: 15 APR 2006

CON

 _clkmode = xtal1 + pll16x ' use crystal x 16
 _xinfreq = 5_000_000 ' external xtal is 5 MHz

 LCD_PIN = 0 ' for Parallax 2x16 serial LCD
 LCD_BAUD = 19_200
 LCD_LINES = 2

 POT_PIN = 1 ' rc circuit connected to A1

VAR

 Column #134: Spin Baby Spin

The Nuts and Volts of BASIC Stamps 2006

 long potVal

OBJ

 lcd : "debug_lcd" ' use Parallax serial LCD driver
 pot : "rctime"

PUB main

 if lcd.start(LCD_PIN, LCD_BAUD, LCD_LINES) ' start LCD object
 lcd.cursor(0) ' no cursor
 lcd.cls ' clear the LCD
 lcd.backLight(true) ' backlight on (if available)
 if pot.start(POT_PIN, 1, 1520, 642, @potVal) ' start RCTIME object (scale 0 - 99)
 repeat
 lcd.home
 lcd.decf(potVal, 5) ' print potVal (right-justified)
 waitcnt(clkfreq / 5 + cnt) ' pause 1/5th second

