
Copyright © Nuts&Volts Magazine From Spin to PASM and Back Again January 2011 Page 1 of 7

From Spin to PASM and Back Again
By Jon Williams

For Nuts & Volts Magazine, Column 10, January 2011

For those of us that started with the BASIC Stamp and then, perhaps, migrated to the SX via SX/B, there
can be a bit of a learning curve moving to the Propeller and its native language, Spin. Personally, I like
programming in Spin and I think my exposure to other programming languages allowed me to pick it up
and adopt it pretty quickly. Like anyone, though, it took a few programs before the “Aha!” moment
revealed itself. In working with friends I get the idea that sharing variables and the cog-to-cog connection
is a real challenge. So let’s start the new year with a tutorial of sorts so that we can get a really firm grip
on these processes. Once you have your own “Aha!” moment a whole new world of programming fun
awaits you.

I know what you’re thinking: “He mentioned PASM—man, I don’t want to learn Assembly!” With the
speed improvement of the Propeller over the BASIC Stamp you don’t have to for everything, but there will
be times when using PASM over Spin is required, and other times when it would just be nice in terms of
performance improvement.

For example: If you want to create a 1-Wire driver it is my opinion that it must be done in PASM. The
timing requirements of that protocol are very strict (it’s asynchronous, so they have to be) and the ~5 µs
time per Spin instruction is just too coarse. In the “nice to have” category you can find floating point math
objects in the Object Exchange (ObEx) that are written in Spin and PASM, the latter being much faster. In
applications like real-time process control that require floating point math, speed is important and PASM
is a big help. Thankfully, as with the floating point libraries, there are a lot of great PASM objects available
for us to use.

There is no person in their right mind who would accuse me of being the brightest bulb in the box and yet
I have been able to write PASM code for many applications. I find PASM far friendlier than other flavors of
Assembly and am getting better all the time. You will, too—once you dig in.

That said, I’m getting ahead of myself, and this article is not about PASM programming but how to share
variables in a complex project, as how to connect Spin code to PASM code when that need arises. Again,
this seems to be a stumbling point for many Propeller newcomers and it is my hope to put a “regular guy”
spin (pun intended) on the process to help you create cooler Propeller programs. As with many
programming languages, Spin has features that protect the casual programmer, while giving the
advanced programmer the tools for creating code as he or she desires.

Scoping Things Out

Before we get to the Spin-to-PASM connection it’s probably a good idea to talk about variable scope as
this will answer the “Why do we have to do it that way?” question before we get there.

Copyright © Nuts&Volts Magazine From Spin to PASM and Back Again January 2011 Page 2 of 7

Let’s start with a very simple program; this will print a random number of stars (asterisk character) on a
terminal every 500 ms.

obj

 term : "fullduplexserial"

var

 long stars

pub main | lottery, idx

 term.start(RX1, TX1, %0000, 115_200)
 pause(1)
 term.tx(CLS)

 repeat
 ?lottery
 idx := ||lottery // 32 + 1
 printstars(idx)
 pause(500)

pub printstars(count)

 if (count > 0) and (count =< 32)
 repeat count
 term.tx("*")
 term.tx(CR)

Starting from the top we can see that this object—our top object—has a child object called term that is of
FullDuplexSerial type. Let’s skip past this for a moment and come back to it.

In the VAR declaration section we have a long called stars. Variables declared in the VAR section are
global to the object, that is to say that any of the methods in the object have access to them. While we’re
not doing it now, we could access stars from the main() method as well as from the printstars() method.

In the main() method we have two local variables: lottery and idx. The only code that has direct access to
these variables is in main(). If wrote a line of code in printstars() that attempted to use lottery or idx the
compiler would complain. This is what we mean by scope: it refers to the access of a variable. Some
variables have global scope, some are local. On the storage side, all variables for Spin code are stored
within the 32 KB hub RAM; it is the compiler that prevents local variables in one method from being
(directly) accessed by another method.

In Spin, local variables can have the same name as local variables in other methods; the local scope
prevents conflicts. What we cannot do is give a local variable the same name as a global variable in the
object as this would create a conflict for the compiler. I try to give most variables unique names but as in
this case, there are generic names I use for local variables that have meaning to me, for example: lottery
for random numbers, and idx for an array index or generic counter.

At the top of the above listing we declared an object called term that will handle serial communications to
a terminal program. If we open that object we’ll see that it also has a global VAR section. With these
variables defined in a VAR section do we have access to them from our top object in the main() and
printstars() methods? No. As I stated earlier, global variables are only global to the object in which they
are defined. A child object usually provides access to its variables through custom methods. The benefit
of this strategy is that a child object controls what it reveals to its parent.

Copyright © Nuts&Volts Magazine From Spin to PASM and Back Again January 2011 Page 3 of 7

It may seem a bit of a hassle to have to write a method to expose the value of a variable in the child
object, but this is really for the best. Imagine if variables in a child object VAR section became global to a
project in which the object is used. It’s likely that we’d have all sorts of naming conflicts in the project,
rendering the use of separate object files, well, useless.

A couple final notes vis-à-vis scope for child objects: a parent has access to those child methods that are
declared as public only. From time to time we will create child object methods that should only be called
from within that object; in these cases we should declare the method as private. Finally, child objects do
not have access to methods in their parent.

What’s Your Address, Man?

I have deliberately used the term “direct access” a couple of times—let me explain why. As I indicated
earlier, all Spin variables are stored in the hub RAM. It stands to reason, then, that we should be able to
get to any variable from any piece of code. We can... if we know that variable’s address.

You may see code that looks like this:

 pntr := @myVariable

The @ symbol tells the compiler to move the address of myVariable into pntr; without the @ symbol we
would copy the value in myVariable to pntr. This is tricky at first but really useful. If we know the address
of a hub variable, we can get to it from anywhere, even from another cog.

To write a value to a known address we could do this:

 long[pntr] := someValue

This bit of code tells the compiler to write a long (four bytes) to the address stored in pntr. We can also
write words and bytes. This technique allows objects to update variables in other objects, even when
normal scope rules would prevent it.

Of course, we can also read a value this way.

 someValue := long[pntr][2]

Knowing the base address we can treat the hub RAM as an array, as shown above. In this particular
example the second word after the location indicated by pntr will be moved into someValue.

It should be clear that the key to allowing one method or object to access variables in another—even from
another hub—is to share the address of the variable(s) you want to allow access to.

Let me give you a real-world example: I’m working on a pan/tilt controller for my buddy, Lou. The circuit
includes an MCP3208 ADC chip. In Lou’s project I want the joysticks to be read every millisecond and
automatically update an array that is part of the main program. The ADC object I’m working on (in PASM,
hence runs in another cog) uses the following call to initialize.

 analog.init(CS, CLK, DIO, @joysticks)

The first three parameters are the pins used by the ADC chip. Note that the forth is prefixed with @ which
indicates I want to pass the address of the array called joysticks. The PASM code will use the wrword
instruction to write a word variable to a hub location; knowing the hub address of joysticks[0] lets me
update the array.

Copyright © Nuts&Volts Magazine From Spin to PASM and Back Again January 2011 Page 4 of 7

What I hope you grasp by now is that if a variable lives in the hub RAM, we can get to it from anywhere,
even a PASM cog. What we cannot do, however, is directly manipulate a PASM variable from another
cog. Of course, we can indirectly manipulate a PASM variable—this requires a gateway to the cog and
will be the focus of the rest of this article.

From Spin to PASM and Back

When dealing with a variable that’s part of a PASM program, access to the variable from outside the cog
requires some code. In general, the outside code passes a request to the cog through a known hub
variable. The cog must read this request and respond as desired which could be to write a value to some
location in the hub that is known to the outside code.

Propeller newcomers, especially those with Assembly experience in another processor, often ask how to
integrate PASM methods into their Spin programs. As with variable access in a PASM cog, we can’t—at
least not directly.

Keep in mind that our Spin code is running in a Spin interpreter (virtual machine is probably a better
description) that has been loaded into a cog. A cog running the Spin interpreter can only run pre-compiled
Spin byte codes (which are stored in the hub), there is no way interleave straight PASM code into these
programs. What we do, then, is create a PASM program and launch it into its own cog. To access this
code we create a Spin interface that allows values to move from Spin to PASM and back again.

I like creating templates for programs that will adopt a similar structure and I have one for creating
subroutines in PASM. Of course it requires a little bit of effort to take it from template to working program,
but it handles a lot of the grunt work required to pass command from Spin to PASM and to get a result
from PASM to Spin. You can find that code in __pasm_subs.spin (I use the double underscore to force it
to the top of the files pane in the Propeller Tool).

As learning by specific example is best, and blinking LEDs is something we can do with virtually any
Propeller development setup, let’s learn how to connect from Spin to PASM by creating a little LED
control mechanism. Remember, we’re not blinking LEDs for the sake of blinking LEDs, but to start to get
comfortable connecting Spin to PASM. Once we’re comfortable with the connection the sky is the limit!

Okay, we can’t get there without knowing where we’re going, so let’s make some decisions:

1. We’ll have a command that allows us to turn an LED on or off
2. We’ll have another command that lets us blink an LED a specific number of times—we can

also specify the blink timing (ms)

The fully commented blinker object is led_ctrl.spin. Let’s dissect it—though not in order as we find in the
listing—to get a handle on how it works.

At the top are the variables that are global to the object.

var

 long cog

 long mstix
 long cmd
 long pin
 long pulses
 long timing

The first variable, cog, is used to indicate that the PASM cog is loaded. The way in which this variable is
used is very standard in PASM objects created by Parallax and others.

Copyright © Nuts&Volts Magazine From Spin to PASM and Back Again January 2011 Page 5 of 7

The next group is what we’re going to be working with. The first, mstix, holds the number of counter ticks
per millisecond. We need this for delays, and this really should be set at run time to account for the speed
at which the Propeller is running. Cmd will hold the command passed to the PASM code, and also serves
as a flag to indicate when an external process is finished. Pin is the pin number we want to use. Pulses
will hold the pulse count for that feature. It is also used to hold the state for direct on/off control. Finally,
timing will hold the pulse timing in milliseconds for that feature.

As with other PASM objects we need to launch the code into its own cog. Some objects use a method
called start() though I prefer to use init() as this prevents confusion with I2C commands that are often
used with the Propeller. For this program we don’t have to pass any parameters to the init() method.

pub init | ok

 finalize

 mstix := clkfreq / 1_000
 cmd := 0

 ok := cog := cognew(@entry, @mstix) + 1

 return ok

The first thing we need to do is make sure that our object doesn’t already have a cog loaded and running.
If it does, the finalize() method will shut it down.

Initialization is pretty simple: we set the number of counter ticks per millisecond in mstix, clear the
command (so that the PASM cog will wait for a valid command), and then we start the cog. Note that in
the cognew instruction we pass the address (@) of the code that will be loaded as well as the address of
mstix which is the first in our list of working variables.

There was a recent post in the Propeller forum that the interface to a PASM-coded object should be
through a single variable (usually a variable address) which is passed in the par register (the second
parameter in the cognew call). In the past I have violated this idea by allowing Spin to “poke” values into
the Assembly code before it is launched into its own cog. There is a good reason for the par only access:
this allows creators of other languages to adapt our PASM objects—this is a good thing as it allows our
hard work (the PASM code) to be used by more programmers.

Let’s skip down to the top part of the Assembly code for our object. This provides the connection to the
variables we’ve established above.

dat

 org 0

entry mov tmp1, par
 rdlong ms001, tmp1
 add tmp1, #4
 mov cmdpntr, tmp1
 add tmp1, #4
 mov pinpntr, tmp1
 add tmp1, #4
 mov pulsepntr, tmp1
 add tmp1, #4
 mov timepntr, tmp1

As reminder, when we launch the Assembly code into its own cog we pass the address of mstix in the par
register. As mstix is the first in our list of object variables we can use it as an anchor point.

Copyright © Nuts&Volts Magazine From Spin to PASM and Back Again January 2011 Page 6 of 7

The PASM code starts by copying par into tmp1 so we can modify it to point to the other variables. Tmp1
now holds the address of mstix so we use this with rdlong to move the number of ticks per milliseconds
into the cog variable, ms001. Yes, the cog does have access to the clkfreq register but without built-in
division, it’s easier to do the ticks-per-millisecond math in Spin.

If we add four to what’s in tmp1 we’ll have the hub address of the object variable called cmd, the next
variable in our list. This gets saved into a PASM variable called cmdpntr. This same process is used to
save the hub addresses for the pin, blink count, and blink timing variables. With the variable pointers
setup the next part of our PASM code will wait on and process a command from the hub.

getcmd rdlong tmp1, cmdpntr wz
 if_z jmp #getcmd

checkcmd cmp tmp1, #1 wz
 if_e jmp #cmdset
 cmp tmp1, #2 wz
 if_e jmp #cmdblink

cmddone mov tmp1, #0
 wrlong tmp1, cmdpntr
 jmp #getcmd

If you’re new to PASM this is the equivalent of a stacked IF-THEN structure to process the command. The
first line reads the long at cmdpntr into tmp1. Note that the Z flag is affected by this instruction. If the
command is zero (no command) the Z flag will be set and the next line will cause the program to jump
right back to the top to read the command again. This causes the program to wait for a non-zero
command value.

At the label checkcmd we start looking at the value passed by the user and dealing with it. There are
many ways to do this and I tend to resort to simple. The cmp instruction compares what is now in tmp1
with a legal command value. I prefer this style because it is in fact simple and allows the use non-
contiguous command values. When the command is equal to the value we’re checking for the Z flag will
be set (wz must be specified with cmp to set/clear the Z flag). The if_e (if equal) condition, when true,
causes the program to jump to the appropriate command handler code. If the command passed is not
known by the program the code eventually makes it to cmddone where the hub variable is overwritten
with zero – this allows another command. We use the same process (clear to zero) at the end of valid
commands.

Back to the Spin code—let’s look at the Spin interface for controlling an LED (turning it on or off).

pub set(p, state)

 repeat while (cmd <> 0)
 pulses := state
 pin := p
 cmd := 1

Notice that the first line of code in this method actually checks to see if the PASM cog is busy by looking
at the present hub value of cmd. This will be important in many applications, especially when the
background process is somewhat involved (e.g., transmitting an IR code or other signal generation). The
next step is to load up the variables used and as you can see we’re doing it in reverser order. This part is
really important. Since the top of the PASM code is just waiting for cmd to change to a non-zero value, we
have to load any variables required by the background process first.

When the set() method is called the following (super duper easy) PASM code is executed.

Copyright © Nuts&Volts Magazine From Spin to PASM and Back Again January 2011 Page 7 of 7

cmdset rdlong tmp1, pinpntr
 mov pinmask, #1
 shl pinmask, tmp1
 rdlong tmp1, pulsepntr
 test tmp1, #1 wc
 if_c or outa, pinmask
 if_nc andn outa, pinmask
 or dira, pinmask

 jmp #cmddone

To activate a pin we need to know what the pin number is and the state we want to set it to. We read the
pin number from the hub (stored at the address in pinpntr) into tmp1 and then use that to create a pin
mask. We’re going to read the desired state (0 for off, 1 for on) from BIT0 of the value stored at pulsepntr.

To check the state we use the test instruction with a mask value of 1 (BIT0 only). The test instruction
works like and but doesn’t affect the value in the destination field (tmp1 in this case). What it will do,
though, is affect flags at our direction. As we’ve specified modifying the C flag in the test instruction, the
C flag will receive the desired LED state.

Using conditional instructions with the C flag we can write a “1” to the outa bit for the pin when it’s
supposed to be on (high), or zero when it’s off (low). If you’re brand new to PASM you may be wondering
what happens when a condition is false: that instruction simple acts like a nop and does nothing (except
consume one instruction cycle). By using or with the pin mask we can turn write a “1” to the desired bit
without affecting the others; by using andn we can write a “0” to the desired bit without affecting the
others. Note that in either case we always write a “1” to the pin’s bit in the dira register to make it an
output.

Now, if a program was doing a calculation, or waiting to get a value back from an external device, we
would write the result back to the hub at a location known by the Spin interface. Once the result – if there
is one – has been written to the hub we can clear the command value and allow another to be passed. As
in the Spin interface, the command variable in the hub is the last thing that to be modified.

You should be able to analyze and understand the command for blinking an LED (cmd = 2) with no
trouble now. Remember to download the commented listing from Nuts & Volts. It includes a demo code
to that puts the object through its paces and will allow you to experiment.

It’s a New Year, It’s Time to Play!

I know, I know, blinking LEDs is boring. For me, too, believe me. But so is going to the gym and lifting
weights to get trim and healthy, yet most of us do it. I ask you to be kind to yourself and play with this
program until the interface makes sense and you can make it bend to your will. We’re going to do some
really fun projects this year and I want you to be able to modify them as your needs differ from mine. For
that to happen, though, you need this foundation. Okay? Okay. Go have fun!

Until next time, keep spinning and winning with the Propeller!

Resources

Jon “JonnyMac” Williams
jwilliams@efx-tek.com

Parallax, Inc.
www.parallax.com

Gadget Gangster
www.gadgetgangster.com
– Propeller Platform kits and accessories

