
Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

Column #136, August 2006 by Jon Williams:

Stepping Out with Spin

Are you ready to get some motors spinning? Yeah, me too. As we saw last month with the
BS1, to get more performance we have to think differently. With the Propeller chip, the entire
paradigm is different and we are in fact forced to adapt. Sometimes change can be a bit
uncomfortable, and changing from one programming style to another can be, well… tough --
if we let it. The funny thing for me is that I have done so much Spin programming the past
year that when a client asked me to design a control product using an SX28, I had to shift
gears back to a somewhat linear style. Yes, there were a few moments when I was wishing the
customer had wanted to use the Propeller – my life might have been a little easier. Okay,
then, how do we make the shift to Spin programming so that it becomes as comfortable as our
old friend, PBASIC? For me, direct translation is the best way to start.

Perhaps it was me being too busy to notice, but I have this sudden awareness that controlling
stepper motors is popular again. They are indeed very cool, finding use in hobby applications
in everything from robotics to home-built machine shop tools. And stepper control is actually
quite easy as we’ve seen in the past. Let me qualify that controlling one stepper is quite easy;
what if we want to control two – independently – for a robot, or even three for some kind of
XYZ machine platform? Yes, we could resort to a hardware stepper controller, but with the
Propeller… we don’t have to anymore; we can code our own controller in Spin and manage as
many motors as our I/O pins will allow.

First things first: let’s take the standard BS2 stepper demo program and translate it to Spin.
This will do a couple things for us: 1) It lets us easily verify that the hardware is working with

 Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

a simple program, and 2) It helps us make the translation from something we know to
something we want to know.

Translation is on my mind lately as on my morning walks I listen to a Japanese language
training CD. With the CD I am taught new words and phrases, and then a bit later the
“teacher” will ask, “How do you say….” We can do this for ourselves. I’ll be your teacher
for this lesson; after you’ve mastered it, I suggest you follow this same process with your
favorite BASIC Stamp programs.

From PBASIC to Spin
To start with I’m going to translate the BS2 stepper motor demo code that is available on the
Parallax web site (and in the ZIP for this article). We’ll go section-by-section making the
translation from PBASIC to Spin.

Figure 136.1 shows the driver that we’ll use to run the stepper motor: an L293D. I like this
chip for driving steppers because it can drive unipolar (5 or 6 wires) or bipolar (4 wires)
steppers with the same code. The only difference in the connections is that the unipolar motor
has a common connection (or two) that goes to GND. Note that the original BS2 demo does
not deal with the L293D enable pin, so we’re going to add that to the program – it’s a useful
feature as it allows the stepper to “coast” when enable is not active.

Figure 136.1: Stepper Motor with L293D

Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

A couple things about the L293D: You’ll not that the logic supply (+5) is called VSS by the
manufacturer – do not connect this pin to ground. The GND pins (4, 5, 12, and 13 on the DIP
version) are for ground. The motor supply pin is called VS, this is pin 12 on the DIP. Before
you make the connections for the L293D version you select, be sure to review the data sheet
so that you make the correct connections. Also note that I’ve pulled the L293D Enable pins
low through a 4.7K resistor; this disables the outputs when the control pin is disconnected or
floating. If the Enable pins are allowed the float the L293D outputs will be active.

Author’s Note: The TI SN754410 can be used in place of the L293D.

Okay, let’s start translating code. At the top of the BS2 program we’ll find the following
definitions for the I/O connections and the number of steps the motor requires for a single
revolution.

Phase VAR OUTB

StpsPerRev CON 48

And here’s how we’re going to end up translating that code to Spin:

CON

 _CLKMODE = XTAL1 + PLL16X
 _XINFREQ = 5_000_000

 EN = 0
 M1 = EN + 1
 M4 = M1 + 3

 STEPS_PER_REV = 48

Okay, so there’s a little more work involved with the Spin definitions, but with that we get a
whole lot more power and flexibility. We always start by defining _CLKMODE and
_XINFREQ; the listing shows our “standard” selection of a 5 MHz clock input and the 16x
PLL tap; this causes the chip to run maximum speed (80 MHz).

Next come the I/O pins. As noted earlier, we’re adding an Enable, along with the
[contiguous] motor connections. With the Propeller we have enormous flexibility with I/O.
On the BASIC Stamp, we select nibble boundaries for the four stepper motor outputs. With
the Propeller, those boundaries don’t exist and we can use any four contiguous pins to control
the motor (we’ll see that in just a second).

 Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

Next up are the global variable definitions:

idx VAR Byte
stpIdx VAR Nib
stpDelay VAR Byte

Remember that the BASIC Stamp uses an 8-bit core (PIC or SX), so its native variable type is
the Byte. Bits, Nibs, and Words are allowed, but they actually take work on the inside of the
Stamp to support them. The Propeller uses a 32-bit core, so its native variable type is the
Long. Since the Propeller has 16x the RAM space of the BASIC Stamp, we don’t have to be
so conservative with variable definitions, in fact, by using Longs the program is more
efficient as that is the native type.

VAR

 long idx, stpIdx, stpDelay

Yes, we could have defined these variables as Bytes or Words (there are no Bit or Nib
variables in Spin) but, again, it would not have improved the performance of the program.
The next section in our PBASIC version of the program is a DATA table for the stepper
motor coil patterns.

Steps DATA %0011, %0110, %1100, %1001

And in Spin:

DAT

 Steps byte %0011, %0110, %1100, %1001

By convention, PBASIC DATA tables usually appear near the beginning of the program and
Spin DAT section(s) appear at the end. This is just convention and the compilers do not care
either way. Do note that we define the element size of items in a DAT table.

And now we get into the working code:

Setup:
 DIRB = %1111
 stpDelay = 15

Main:
 FOR idx = 1 TO StpsPerRev

Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

 GOSUB Step_Fwd
 NEXT
 PAUSE 500
 FOR idx = 1 TO StpsPerRev
 GOSUB Step_Rev
 NEXT
 PAUSE 500
 GOTO Main

This is very simple; we start by making the motor control pins outputs, initializing the step
timing (the delay, in milliseconds, between step changes), and then the stepper is rotated back
and forth. The equivalent code in Spin – with a fun modification – looks like this:

PUB main

 dira[M4..EN]~~
 outa[EN]~~

 repeat
 stpDelay := 5
 repeat idx from 1 to STEPS_PER_REV
 stepFwd

 pause(500)

 repeat while (stpDelay < 50)
 repeat idx from 1 to STEPS_PER_REV
 stepRev
 stpDelay := stpDelay * 125 / 100

 pause(500)

As with the PBASIC program, our first task is to make the motor control pins outputs. And
here’s where Spin is very flexible with I/O pins. In the BASIC Stamp, we can work with one
pin, four pins, eight pins, or all 16. With the Propeller, we can work with any contiguous
group of pins that we choose by using the dot-dot notation. This line, then:

 dira[M4..EN]~~

 Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

...is equivalent to:

 dira[4] := 1
 dira[3] := 1
 dira[2] := 1
 dira[1] := 1
 dira[0] := 1

As you see, we’ve also used the post set to -1 (double tilde) operator as a shortcut. I find this
best when the goal is to make all of the target bits one – it prevents possible errors by
miscounting the number of bits in the target group. Do be sure to use two tildes as a single
post tilde (~) will clear all target bits to zero.

After making the control pins outputs we set the enable pin high using the outa register.
Again, the ~~ is used. You see, this operator works no matter how many bits are to be
affected, hence it is incredibly useful.

And now we start running the motor. There is no GOTO in Spin, so the loop construct we use
in the PBASIC version is handled with repeat. Look carefully, and you’ll see that there is a
single repeat under which everything else is indented. Remember, with Spin, formatting
counts. If you’re unsure about the levels of indenting in a program, the editor will show you
by pressing [Ctrl]+[I] (this toggles the indention display on/off). And you can adjust the
indent level of a group of lines by selecting them and pressing [Tab] (indent in) or
[Shift]+[Tab] (indent out).

At the top of the loop we set the initial step delay which serves as a speed control for the
stepper – the shorter the delay, the faster the stepper will move. Now don’t get crazy and
think that you can have nearly no step delay. Stepper motors are mechanical devices and do
need a bit of delay betweens steps. If we start with a step delay that is too short the motor
may not run, or will just sit there quivering; not a pretty sight….

Now we do the first [inner] loop that runs the motor forward one revolution. In PBASIC,
FOR-NEXT is used; in Spin, we use repeat from. As you can see, there is no NEXT required
because, again, it is indenting that defines the block of code for the loop. The only thing
we’re doing in the loop is moving the motor one step by calling a subroutine.

Step_Fwd:
 stpIdx = stpIdx + 1 // 4
 GOTO Do_Step

Step_Rev:

Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

 stpIdx = stpIdx + 3 // 4
 GOTO Do_Step

Do_Step:
 READ (Steps + stpIdx), Phase
 PAUSE stpDelay
 RETURN

This, too, is simple code, and designed to absolutely be as small as possible. We don’t have
to work so hard in Spin, though we do have to create our own pause method to duplicate the
PAUSE instruction of PBASIC.

PRI stepFwd

 stpIdx := ++stpIdx // 4
 outa[M4..M1] := Steps[stpIdx]
 pause(stpDelay)

PRI stepRev

 stpIdx := (stpIdx + 3) // 4
 outa[M4..M1] := Steps[stpIdx]
 pause(stpDelay)

PRI pause(ms) | c

 c := cnt
 repeat until (ms-- == 0)
 waitcnt(c += clkfreq / 1000)

This should all make perfect sense. Note the use of C-like operators: ++ (pre increment) and
that our DAT table can be accessed like a simple array (hence no READ instruction).

The pause method here is quite useful and you’ll probably want to have it for other programs.
As you can see, this method uses local variables; these come from the stack and are not
available to the program outside this method. For pause we will pass the number of
milliseconds to delay, and we use waitcnt method to delay one millisecond within a loop.

This loop may look a bit tricky – unless you have a C or Java programming background – as a
lot of work is being packed into one line of code.

 repeat until (ms-- == 0)

 Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

What is important to note here is the position of the decrement (--) operator; it comes after the
variable so the comparison (ms == 0) will be done first. If the value of ms is greater than zero
it will be decremented and the loop code will run. If we wanted to be very verbose we could
expand the line to this:

 repeat until (ms == 0)
 ms := ms - 1

Let’s finish up and move on. If you look at the second half of the Spin version you’ll see that
we’ve simply added a speed change between each rotation. When the program runs the motor
will spin one revolution forward, then several revolutions backward, slowing down as it does.

Mo’ Motors, Please….
This is a lot of fun, but now it’s time to move on and take advantage of the Propeller’s eight
cores – well, for the time being we’ll just going to use one more. Our goal, of course, is to
drop the stepper control into its own core so that it can run freely in the “background” while
our “foreground” program is doing other things. By doing this our “foreground” is free, and
with up to seven “background” cogs we can control a whole lotta motors!

If you’re new to the Propeller please let me suggest that you go back and read the April, May,
and June editions of this column, focusing especially on June where the idea of “background”
processing and control is explored.

So we’ve decided to create a stepper motor object; we need to think about its behaviors.
What features (behaviors) do we want in our stepper motor object? The basics, I think,
should be something like this:

• Control the L293D enable pin
• Set motor to running or stopped
• Set mode to free running or step mode
• Set direction – forward or reverse
• Set motor speed through step delay
• Set discrete number of steps to run before stopping

That’s enough to get us started with a fairly full-featured stepper controller. The object is
called stepper.spin; go ahead and open it now so you can see how things are constructed.

The two key areas, of course, are the start method that is used to launch the control into its
own cog, and the runStepper method that is in fact what does the actual work. To get
runStepper into its own cog we will use cognew. If a cog was available and the method was

Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

launched successfully, cognew will return a value greater than zero. Here’s the start method
that includes the launch code for runStepper:

PUB start(ePin, mnTime) : okay

 okay := cogon := (cog := �
 cognew(runStepper(ePin + 1), @stack)) > 0

 if okay
 en := ePin
 minStpTm := stepTm := mnTime
 setMode(%0000)
 enable(false)
 stpIdx~
 numSteps~

The start method expects two parameters: the pin that controls the L293D Enable inputs, and
the minimum step timing for the motor being used. This method will return true or false
depending on the result of cognew. As you’ll see in the demo program, we won’t actually do
anything unless start returns a value of true.

When we launch runStepper with cognew we have to pass along the pin number of coil #1 for
the motor – the others are expected to be contiguous. This is critical. I fought for nearly a
day when writing the object because I couldn’t get the background code to control the motor,
while the foreground would happily do it.

Well, I finally gave in and made a call to Parallax. After going through the code with Chip
and trying all sorts of things he suddenly blurted, “Oh, I see what’s wrong!” Here it is… this
is big… please remember it: Each cog has its own I/O pin definitions, and as runStepper runs
in its own cog, it has to define any I/O pins that it needs to control. By passing the start of the
motor pins group to the method it can set the pins as outputs and update the motor as required.

Okay, assuming that runStepper does get launched, the rest of the start method takes care of
initializing variables used by the object. Another important point to remember is that all Spin
code lives in the main system RAM so the background method (runStepper) has access to the
global variables in the stepper object. To control the stepper, then, we will create methods
that modify the global variables used by the runStepper method.

Since runStepper is king, let’s have a look at it.

 Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

PRI runStepper(m1) | m4, c

 m4 := m1 + 3
 dira[m4..m1]~~

 timer~
 c := cnt
 repeat
 waitcnt(c += clkfreq / 1000)
 if (mode & M_ENABLED) and (mode & M_RUN)
 timer := ++timer // stepTm
 if (timer == 0)
 if (mode & M_STEPS)
 if (numSteps-- > 0)
 if (mode & M_REV)
 stpIdx := (stpIdx + 3) // 4
 outa[m4..m1] := Steps[stpIdx]
 else
 stpIdx := ++stpIdx // 4
 outa[m4..m1] := Steps[stpIdx]
 else
 if (mode & M_REV)
 stpIdx := (stpIdx + 3) // 4
 outa[m4..m1] := Steps[stpIdx]
 else
 stpIdx := ++stpIdx // 4
 outa[m4..m1] := Steps[stpIdx]

At first blush this may look a bit complicated, but as you dig in you’ll see it’s a lot of small,
logical blocks. What we have here – in about 30 lines high-level of code – is a background
stepper motor driver. I just think that is very cool.

The method starts by making the motor control pins outputs; we discussed the reason for
doing that here earlier. The rest of the code is contained with in a big repeat loop that will run
until the cog gets unloaded. At the top of the loop is a waitcnt that inserts a one millisecond
delay, so this means that all the rest of the code in the loop will get processed once per
millisecond.

We have four status bits that affect the stepper. The first two that we test for are the L293D
enabled bit and the motor running bit. If either of those bits is zero (off) then there is no point
in going any further. Let’s assume that the L293D is enabled and the motor is set to run.

Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

If we inserted the pause method from the simple program in the loop we would not be able to
affect the stepper on-the-fly, so timing is handled with a global variable using the increment
and modulus strategy that we’ve used so many times in the past (in PBASIC and Spin). By
making timer a global variable it can be reset with stepTm when we want to affect the motor
speed, and we will get a near-instant change. If timer were a local variable we would have to
wait for the current step timing to complete before the change occurred – this might not be a
good thing if we had a very long step time.

Once the step timing expires we check the current mode: step (the motor runs numSteps steps
and then stops) or free run (motor spins continuously at current speed). When in step mode
we check to see if there are any steps left and if so, run a step based on the direction bit.
When in free-run mode, we simply look at the direction and do a step. The code should look
familiar as we simply copied it from the stepFwd and stepRev methods used in the first
program.

You’ll notice that there is a bit of redundant code in this method. Again, this method is
running in its own cog and has its own I/O definitions. If we attempted to use the stepFwd
and stepRev methods from the first program we would have two cogs (foreground and
background) attempting to control the same set of pins – not a good idea. Ask me how I
know this (yes, I tried….).

Okay, let’s let ‘er rip. We don’t need to go through the entire demo – here’s the code that
defines the motor and gets it running.

OBJ

 motor : "stepper"

PUB main

 if motor.start(EN, MIN_STEP_MS)
 motor.enable(true)
 motor.setRun(true)
 motor.stepRun

 repeat idx from 1 to 5
 motor.setSteps(STEPS_PER_REV)
 repeat until (motor.getSteps == 0)
 pause(200)
 motor.setSteps(-STEPS_PER_REV)
 repeat until (motor.getSteps == 0)
 pause(200)

 Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

 motor.setStepTmr(500 / STEPS_PER_REV)
 motor.freeRun

 motor.setRun(false)
 motor.setDir(motor#RUN_FWD)
 motor.setRun(true)
 pause(5_000)

 motor.setRun(false)
 motor.setDir(motor#RUN_REV)
 motor.setRun(true)
 pause(5_000)

 motor.setRun(false)
 motor.stop

We start by defining a stepper object called motor and launching it into its own cog. If that
works out, the demo puts the stepper into step mode and spins it back-and-forth five times.
Note that when we set the number of steps to a negative value, the motor direction is set to
reverse. This strategy should be useful for those doing positioning projects and looking at a
change of locations; a positive change moves the motor forward, a negative change moves the
motor in reverse.

After the wig-wag loop the step timing is changed to two revolutions per second – we can do
this easily because our step timing is specified in milliseconds. After that we put the stepper
into free run mode, make sure the direction is forward (note the use of the named constant,
RUN_FWD, from the stepper object) and then let it run for five seconds. After the delay the
motor is stopped, the direction is reversed and the motor is allowed to run for another five
seconds. Finally, the motor is stopped and the object is unloaded.

Well, I think that’s about enough fun for this month, don’t you? Remember, this stepper
object is just a starting point and one could certainly add features to it. Before you do that,
though, make sure that you’ve got a good grasp on how the essential code works; once you
do, this program can serve as a template for many other hardware control objects.

Until next time, Happy Spinning!

Resources:
Jon Williams: jwilliams@efx-tek.com

Parallax, Inc.: www.parallax.com

Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

Project Code
' ===
'
' File...... stepper_demo.spin
' Purpose... Demonstrates stepper.spin object
' Author.... Jon Williams, Copyright (C) 2006
' E-mail.... jwilliams@efx-tek.com
' Started...
' Updated... 17 JUN 2006
'
' ===
'
' Permission granted by author for anyone to use/modify/redistribute this
' code. No warranty of suitability for your applicationis expressed or
' implied.
'
' Connections (for L293D DIP):
' --------------------------------------
' P0 -> L293D.1 and L293D.9
' P1 -> L293D.2, L293D.3 -> Phase 1
' P2 -> L293D.7, L293D.6 -> Phase 2
' P3 -> L293D.10, L293D.11 -> Phase 3
' P4 -> L293D.15, L293D.14 -> Phase 4

CON

 _CLKMODE = XTAL1 + PLL16X
 _XINFREQ = 5_000_000

 EN = 0 ' L293 enable inputs (both)
 M1 = EN + 1 ' motor connections
 M4 = EN + 4 ' -- (contiguous)

 STEPS_PER_REV = 48 ' steps per revolution
 MIN_STEP_MS = 5 ' minimum step time

VAR

 long idx

OBJ

 motor : "stepper"

PUB main

 if motor.start(EN, MIN_STEP_MS)
 motor.enable(true) ' enable driver
 motor.setRun(true) ' start the motor
 motor.stepRun ' set to step mode

 repeat idx from 1 to 5

 Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

 motor.setSteps(STEPS_PER_REV) ' one revolution forward
 repeat until (motor.getSteps == 0)
 pause(200)
 motor.setSteps(-STEPS_PER_REV) ' one revolution reverse
 repeat until (motor.getSteps == 0)
 pause(200)

 motor.setStepTmr(500 / STEPS_PER_REV) ' set to 1/2 sec per revolution
 motor.freeRun ' free run mode when enabled

 motor.setRun(false) ' stop motor
 motor.setDir(motor#RUN_FWD) ' set direction to forward
 motor.setRun(true) ' start motor
 pause(5_000) ' run for 5 seconds

 motor.setRun(false)
 motor.setDir(motor#RUN_REV)
 motor.setRun(true)
 pause(5_000)

 motor.setRun(false)
 motor.stop ' unload object

PRI pause(ms) | c

 c := cnt ' sync with system counter
 repeat until (ms-- == 0) ' repeat while time left
 waitcnt(c += clkfreq / 1000) ' wait 1 ms

' ===
'
' File...... simple_stepper.spin
' Purpose... Simple Stepper Motor Demo
' Author.... translated (with modifications) by Jon Williams
' E-mail.... jwilliams@efx-tek.com
' Started...
' Updated... 17 JUN 2006
'
' ===
'
' Connections (for L293D DIP):
' --------------------------------------
' P0 -> L293D.1 and L293D.9
' P1 -> L293D.2, L293D.3 -> Phase 1
' P2 -> L293D.7, L293D.6 -> Phase 2
' P3 -> L293D.10, L293D.11 -> Phase 3
' P4 -> L293D.15, L293D.14 -> Phase 4

CON

 _CLKMODE = XTAL1 + PLL16X
 _XINFREQ = 5_000_000

Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

 EN = 0 ' L293D enable pin
 M1 = EN + 1 ' motor connections
 M4 = M1 + 3 ' (contiguous)

 STEPS_PER_REV = 48 ' steps per revolution

VAR

 long idx, stpIdx, stpDelay

PUB main

 dira[M4..EN]~~ ' make pins outputs
 outa[EN]~~ ' enable the L293D

 repeat
 stpDelay := 5 ' set step delay
 repeat idx from 1 to STEPS_PER_REV ' one rev forward
 stepFwd

 pause(500)

 repeat while (stpDelay < 50) ' modified speed loop
 repeat idx from 1 to STEPS_PER_REV ' one revolution
 stepRev ' in reverse
 stpDelay := stpDelay * 125 / 100 ' add 25% to step delay

 pause(500)

PRI stepFwd

 stpIdx := ++stpIdx // 4 ' point to next step
 outa[M4..M1] := Steps[stpIdx] ' update outputs
 pause(stpDelay)

PRI stepRev

 stpIdx := (stpIdx + 3) // 4 ' point to previous step
 outa[M4..M1] := Steps[stpIdx] ' update outputs
 pause(stpDelay)

PRI pause(ms) | c

 c := cnt ' sync with system counter
 repeat until (ms-- == 0) ' repeat while time left
 waitcnt(c += clkfreq / 1000) ' wait 1 ms

DAT

 Steps byte %0011, %0110, %1100, %1001 ' step table

 Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

' ===
'
' File...... stepper.spin
' Purpose... Stepper motor object
' Author.... Jon Williams, Copyright (C) 2006
' E-mail.... jwilliams@efx-tek.com
' Started...
' Updated... 18 JUN 2006
'
' ===
'
' Permission granted by author for anyone to use/modify/redistribute this
' code. No warranty of suitability for your applicationis expressed or
' implied.

CON

 M_ENABLED = %0001 ' driver enabled / disabled
 M_RUN = %0010 ' run / hold
 M_STEPS = %0100 ' do steps / free-run
 M_REV = %1000 ' reverse / forward

 RUN_FWD = 0
 RUN_REV = 1

VAR

 long cogon, cog ' cog status
 long stack[64] ' local stack

 long en, mode
 long minStpTm, timer, stepTm, numSteps, stpIdx

PUB start(ePin, mnTime) : okay

'' Load background stepper controller if cog available

 okay := cogon := (cog := cognew(runStepper(ePin + 1), @stack)) > 0

 if okay
 en := ePin ' save enable pin
 minStpTm := stepTm := mnTime ' save minimum step time
 setMode(%0000) ' set defaults
 enable(false)
 stpIdx~ ' clear step index
 numSteps~ ' clear steps

PUB stop

 if cogon~ ' if object running, mark stopped
 dira[en]~ ' float enable pin
 cogstop(cog) ' stop the cog

Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

PUB setMode(m)

 mode := m & %1111 ' update mode

 if (mode & M_ENABLED) ' check L292D enable output
 enable(true) ' enable
 else
 enable(false) ' disable

PUB getMode

 return mode ' return current mode

PUB enable(status)

 if status
 mode := mode | M_ENABLED ' set enable bit
 outa[en]~~ ' enable pin high
 dira[en]~~
 else
 mode := mode & !M_ENABLED ' clear enable bit
 outa[en]~ ' enable pin low
 dira[en]~~

PUB setRun(status)

 if status
 mode := mode | M_RUN ' set running bit
 else
 mode := mode & !M_RUN ' clear running bit

PUB setSteps(s)

 if (s => 0) ' positive step count?
 numSteps := s ' yes
 setDir(RUN_FWD) ' run forward
 else
 numSteps := -s ' no, make positive
 setDir(RUN_REV) ' run in reverse

PUB getSteps

 return numSteps ' return curren step count

PUB stepRun

 mode := mode | M_STEPS ' set steps bit

 Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

PUB freeRun

 mode := mode & !M_STEPS ' clear steps bit

PUB setDir(d)

 if (d == RUN_FWD)
 mode := mode & !M_REV ' set to forward
 else
 mode := mode | M_REV ' set to reverse

PUB setStepTmr(time)

 stepTm := time #> minStpTm ' set new step time (with min)
 timer := stepTm ' reset background timing

PUB getStepTmr

 return stepTm

PRI runStepper(m1) | m4, c

'' Run stepper motor as "background" process
'' -- stepper.start method launches this method into separate cog

 m4 := m1 + 3 ' calculate last pin
 dira[m4..m1]~~ ' make outputs for this cog

 timer~ ' clear timer
 c := cnt ' sync with system counter
 repeat ' run until cog unloaded
 waitcnt(c += clkfreq / 1000) ' wait 1 ms
 if (mode & M_ENABLED) and (mode & M_RUN) ' background action active?
 timer := ++timer // stepTm
 if (timer == 0) ' ready for step?
 if (mode & M_STEPS)
 if (numSteps-- > 0) ' any steps left?
 if (mode & M_REV) ' check direction
 stpIdx := (stpIdx + 3) // 4 ' point to previous step
 outa[m4..m1] := Steps[stpIdx]
 else
 stpIdx := ++stpIdx // 4 ' point to next step
 outa[m4..m1] := Steps[stpIdx]
 else
 if (mode & M_REV) ' check direction
 stpIdx := (stpIdx + 3) // 4
 outa[m4..m1] := Steps[stpIdx]
 else
 stpIdx := ++stpIdx // 4
 outa[m4..m1] := Steps[stpIdx]

Column #136: Stepping Out with Spin

The Nuts and Volts of BASIC Stamps 2006

DAT

 Steps byte %0011, %0110, %1100, %1001 ' step table

