

www.paral laxsemiconductor .com
sa les@paral laxsemiconductor.com
support@paral laxsemiconductor.com
phone: 916 ‐632 ‐4664 • fax:916 ‐624 ‐8003

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 1 of 16

Application Note AN004

GUI & Graphics Series — Getting Started with VGA
and Terminal Output
Abstract: Each of the multicore P8X32A’s eight cogs includes a video generator. This first
tutorial in the GUI & Graphics series covers basic VGA character graphics, console terminals,
mousing and simple text input with the Propeller P8X32A microcontroller. Example demos
make use of available drivers to illustrate how effortless it can be to implement a simple
VGA terminal application.

Introduction
One of the Propeller chip’s most powerful features is its ability to implement peripherals
through software drivers loaded at run time, instead of requiring fixed hardware. For
example, RS-232 serial, SPI, I2C, VGA generation, sound, keyboard, and mouse peripheral
interfaces all can be implemented with software drivers.

This freedom is also one of the Propeller chip’s biggest challenges from a programming
perspective. There is no “correct” way to do something; rather, there are numerous
methods, drivers, and approaches possible. A developer must decide what’s right for the
situation and constraints of a particular application, piece together a solution to that
problem with a set of one or more drivers, and then add software on top to arrive at a final
program that performs as desired.

With that in mind, there are a number of VGA drivers for the Propeller that tend to be
“stock” or “default” drivers used by many programmers and applications. Therefore, instead
of going to the Parallax Object Exchange and finding the latest and greatest VGA text driver,
we are going to use one of the tested and more reliable Parallax internally developed VGA
drivers for this application note. This has the advantage that many developers have used
the driver; it is well understood and tested.

The driver selected for this application note is the “VGA High Res Text Driver.” There are a
few versions of it floating around and on the object exchange, but we are going to stick with
version 1.0: VGA_HiRes_Text_010.Spin.

Reviewing the source code for VGA_HiRes_Text_010.Spin, the features of the driver are:

 Supports multiple resolutions such as 640x480, 800x600, and 1024x768.

 Supports 2 unique colors per row

 Requires only 2 processors (cogs) to run

 Very short, only a couple hundred lines of assembly language

 Uses a simple control interface; pointer to character memory and color words

 Includes a clean classic 8x12 pixel “IBM PC” style console font

 Two individual screen cursors (used for mousing or text input tracking)

Parallax Semiconductor AN004

The VGA Driver Features in Detail
The VGA driver itself doesn’t know anything about text, strings, numbers, consoles, user
input, and so forth. It simply reads a buffer (that you provide it) that represents the ASCII
character codes of the VGA screen matrix. This matrix has a maximum size of 128 columns
by 64 rows (128x64) = 8192 bytes for the 1024x768 pixel mode.

For example, if you set the driver to 800x600 pixels, considering the font is 8x12 means the
text screen will be 800/8 x 600/12 = 100x50 characters and require only 5 KB. Figure 1
illustrates this as well as the other mechanics of the VGA driver setup.

Figure 1: Details of a 800x600 Pixel VGA Screen with 8x12 Character Font

The VGA driver has no knowledge or functionality of text, strings, printing, etc. Its single job
is to render the VGA screen, drawing the characters using the 8x12 font in the colors
selected along with the two overlay cursors. All this functionality is achieved via three
different pointers passed to the VGA driver itself. They are named ScreenPtr, ColorPtr and
CursorPtr respectively.

ScreenPtr — A pointer to up to 8192 bytes containing ASCII codes for each of the various
screen resolutions:

 640x480 pixels = 80x40 characters
 800x600 pixels = 100x50 characters
 1024x768 pixels = 128x64 characters.

Each byte's most significant bit (MSB) controls color inversion (inverse video) while the
lower seven bits provide the actual ASCII code. VGA screen memory is arranged left-to-
right, top-to-bottom. For example, the ASCII code for “A” is 64; in binary this is

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 2 of 16

Parallax Semiconductor AN004

%0_1000001. But, if the MSB is inverted like this; %1_1000001 then the character will be
drawn with reversed colors, commonly referred to as “inverse video.”

ColorPtr — A pointer to up to 64 words that define the foreground and background colors
for each text row. The lower byte of each word contains the foreground RGB color for that
row, while the upper byte contains the background RGB color for that row. The RGB data in
each byte is in 2-bits-per-channel format in the following order:

%RRGGBB00 = RGB [2:2:2:0], where the lower 2 bits are always 0.

Each color has 4 possible intensity levels, so there are 4*4*4=64 possible colors for each
row’s foreground and background color. For example, the color word %%0020_3300 would
be yellow on blue.

CursorPtr — A pointer to 6 contiguous bytes which controls the two overlay cursors. These
cursors are drawn on top of the VGA character display and can be used for anything you
wish—to show a mouse pointer, text input cursor, or whatever. The cursor control bytes are
laid out in the following fashion for the 6 bytes in order:

 Bytes 0, 1, 2 represent Cx, Cy, and MODE of cursor 0.

 Bytes 3, 4, 5 represent Cx, Cy, and MODE of cursor 1.

 Cx, Cy represent the (x, y) cursor position on the screen and are in terms of screen
characters, not pixels. So, in a 100x50 text mode (Cx, Cy) range from Cx = (0 to 99)
and Cy = (0 to 50) respectively.

Finally, the 3rd byte in each record: MODE sets the cursor visibility and format. Only the
lower 3 bits are used. The format of MODE’s 3-bit encoding are:

 %x00 = cursor off
 %x01 = cursor on
 %x10 = cursor on, blink slow
 %x11 = cursor on, blink fast
 %0xx = cursor is solid block
 %1xx = cursor is underscore

For example, setting one of the cursors to (0, 0, %011) would set it at the upper hand
corner of the screen at (0, 0) as a solid block, blinking fast.

Terminal Services and Console Support
With the VGA driver in hand, the next step is to develop a custom terminal console. A
terminal/console driver is a piece of software the mimics “standard out” text display on a
PC, much like using print commands from C or BASIC on a PC, or a VT-100 terminal. When
text is printed to the screen, if it extends off the right hand side it wraps around, and when
text reaches the bottom of the screen the text scrolls. These features, along with others,
are part of “terminal/console” functionality.

There are terminal drivers available on the Parallax Object Exchange[1], but many are
limited for simpler applications. Additionally, we would have to “connect” the terminal driver
to the VGA driver, interface them, and re-write much of the terminal driver and/or VGA
driver to make the connection because the terminal driver has to work within the
constraints of the VGA driver’s architecture.

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 3 of 16

Parallax Semiconductor AN004

The goal here is not only to get you up and running with VGA, but to create a framework to
build upon, a robust and feature-rich terminal services driver. Written from scratch for this
purpose, the driver has the following features:

 Direct character and text printing to the VGA screen memory buffer for high speed
applications

 Terminal emulation that allows standard printing of character, strings, numbers (hex,
decimal, binary), and more with support for screen wrap, scrolling, etc.

 Complex rendering methods to draw shadowed boxes, frames, and outlines at high
speed to facilitate drawing controls, buttons, lists, menus, and other higher level GUI
objects

 Number conversion methods and string/character manipulation built in, emulating
common Unix C library functions atoi(), itoa(), strupper() and more

 Simple time-delay methods

The driver WMF_Terminal_Services_010.spin has too many methods to cover here; for an
exhaustive listing please review the source file. The demos below cover key functionality
and features and illustrate how to get things up and running. Finally, Figure 2 below
illustrates the relationship among all the pieces of any VGA application.

Note: The “WMF” prefix stands for Propeller “Window Manager Framework” and will be used
to denote software modules that relate to graphics, windows, GUIs, and other similar
drivers.

Figure 2: Components of a VGA Application

Referring to Figure 2, all applications have a top-level file that runs the application and
instantiates the terminal services driver WMF_Terminal_Services_010.spin along with the
mouse and keyboard driver. Furthermore, the terminal services driver includes the VGA
driver itself.

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 4 of 16

Parallax Semiconductor AN004

Selecting Sub-Object Locations in the Hierarchy
Spin does not allow direct communication between child objects, nor can a child object
directly call a parent object’s methods. Take care when making the organizational decisions
of where to put objects hierarchically. For example, there is no way for the top-level
application to make calls to the VGA driver directly since the VGA driver is instantiated by
the terminal services driver. Therefore, if the top level object wants control of the methods
in the VGA driver (if any) or any child object, an interface layer must be made that passes
method calls from top level object to child object to sub-child object. The call graph of
Figure 3 below shows this: direct parents can call children’s methods, but siblings can’t call
each other and parents can’t call through to grandchildren objects.

Figure 3: Legal Calls from Parent to Child Objects

There are solutions to this dilemma such as using global memory mapped message passing,
but that can become messy as well. Therefore, sometimes, it’s just better to “drag” a child
object up the hierarchy to a top-level parent object, even when it makes more sense as a
child object, and then instantiate it directly and pass downward its state information to
sub-objects and children that need it. This is the thought process for the mouse and
keyboard.

It is cleaner from an abstraction point of view to make the mouse and keyboard objects part
of the terminal services. However, if we did this, the application couldn’t make calls to the
mouse or keyboard driver without creating pass-through methods in the terminal services
driver. Ultimately, we will want everything to be abstracted away and tucked into a single
driver, but for now having the keyboard and mouse at the application level will serve our
needs.

Example 1: Hello World
Load the sample application top-level file WMF_HelloWorld_010.Spin. It requires a Propeller
development board with VGA, PS/2 mouse and keyboard peripherals. Change the base pin
group for the VGA, mouse and keyboard in the CON block of the code as needed. Also, the
source assumes a 5 MHz crystal as well, so change as required. Figure 4 below shows the
demo running on a standard VGA enabled LCD TV.

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 5 of 16

Parallax Semiconductor AN004

Figure 4: The “Hello World” Output on VGA at 800x600 in 100x50 Character Mode

Tip: Rather than buying a new LCD computer monitor, use an LCD TV. It may not support
the ultra-high-resolution modes such as 2000x1600 that some LCD monitors do, but most
LCD TVs can support at least 1280x768. Not only do you get a monitor that you can use for
your Propeller experiments, but you get a built in tuner and can use the TV for other
purposes other than the computer.

The demo begins by entering the first PUB Start which is shown below (with some
comments removed for brevity).

PUB Start

 ' first step create the GUI itself
 CreateAppGUI

 ' MAIN EVENT LOOP - this is where you put all your code in an infinite loop...
 repeat
 ' get mouse state which is being tracked by VGA driver to move
 ' the virtual cursor(s) as well
 gMouseCursX := mouse.bound_x
 gMouseCursY := mouse.bound_y
 gMouseButtons := mouse.buttons

 ' main code goes here................

 ' hello world just print some text to the "terminal"
 ' which will scroll for us automatically
 WMF.StringTerm(string("Hello World! from the Propeller "))

 ' make a call to delay 10 ms just to slow things down, so you can see them...
 WMF.DelayMilliSec(10)

' end PUB ---

This is the recommended software pattern for developing GUI applications. The main entry
point is entered, then a call to some initialization method is made (CreateAppGui in this
case), and then an infinite loop is entered that gets user input, prints on the terminal, gets
user input, etc. In this case, the user input is read by the mouse and keyboard drivers
which are assigned to the globals; gMouseCurs*. Additionally, gTextCurs* is updated the

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 6 of 16

Parallax Semiconductor AN004

other “text” cursor is needed to track user input or show a text input focus. However, in this
demo only the mouse cursor is updated.

The interesting thing about these globals is they are linked to the VGA driver itself during
the initialization call to the driver. However, we don’t make this call directly, since the
terminal services driver instantiates the VGA driver. Therefore, when the call is made to the
terminal services driver to start it up, that’s where the VGA pins and the base address of the
global cursor variables are (6 bytes are sent). This is shown in the code listing below
CreateAppGUI which is called by the previous Start method to perform initialization and
setup (comments abridged to save space).

PUB CreateAppGUI | retVal
' This method creates the entire user interface for the application and performs
' any other static initialization you might want.
 ' text cursor starting position and as blinking underscore
 gTextCursX := 0
 gTextCursY := 0
 gTextCursMode := %110

 'set mouse cursor position and as solid block
 gMouseCursX := VGACOLS/2
 gMouseCursY := VGAROWS/2
 gMouseCursMode := %001

 ' start the mouse
 mouse.start(MOUSE_DATA_PIN, MOUSE_CLK_PIN)

 ' set boundaries
 mouse.bound_limits(0, 0, 0, VGACOLS - 1, VGAROWS - 1, 0)

 ' adjust speed/sensitivity (note minus value on 2nd parm inverts the axis as well)
 mouse.bound_scales(8, -8, 0)

 'mouse starting position
 mouse.bound_preset(VGACOLS/2, VGAROWS/2, 0)

 ' start the keyboard
 kbd.start(KBD_DATA_PIN, KBD_CLK_PIN)

 ' now start the VGA driver and terminal services
 retVal := WMF.Init(VGA_BASE_PIN, @gTextCursX)

 ' rows encoded in upper 8-bits.
 ' columns in lower 8-bits of return value, redundant code really
 ' since we pull it in with a constant in the first CON section, but up to you!
 gVgaRows := (retVal & $0000FF00) >> 8
 gVgaCols := retVal & $000000FF

 ' VGA buffer encoded in upper 16-bits of return value
 gVideoBufferPtr := retVal >> 16

 '---
 'setup screen colors
 '---

 WMF.ClearScreen(PWM#CTHEME_ATARI_C64_FG, PWM#CTHEME_ATARI_C64_BG)

 ' return to caller
 return

' end PUB ---

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 7 of 16

Parallax Semiconductor AN004

Reviewing the method, it starts the mouse, keyboard, and then makes a call to
WMF.Init(VGA_BASE_PIN, @gTextCursX). This call sets the proper VGA base pin group as
well as binding the base address of the globals that are used as an information passing
mechanism to control the positions of the two virtual cursors the VGA driver supports. The
VGA driver could have required method calls to update the positions, but this is a little more
elegant and transparent. Whatever happens to the globals in the top-level object is reflected
almost instantly in the VGA driver’s cursor rendering code.

A few key variables are extracted to track rows, columns, and the video buffer. Finally, a
call to WMF.ClearScreen(PWM#CTHEME_ATARI_C64_FG, PWM#CTHEME_ATARI_C64_FG) is
made. This is one of the terminal services driver’s methods that clears the VGA screen as
well as sets every row of the color control words to the sent foreground and background
colors. In this case, it is a classic Atari 800/C64 white text on blue background. As noted
before, the VGA driver refers to a screen buffer that holds the ASCII codes of the character
matrix ScreenPtr, but there is also pointer to the colors for each row ColorPtr. This gives
you the ability to create colorful GUI arrangements where at least every character row can
have 2 colors per character.

The “#” syntax PWM#CTHEME_ATARI_64_FG might not be familiar to you. In general, to access
a constant in a child object, use the syntax child_object#constant_name. This is a great way
to pull in constants from a child object without having to re-define them locally.

The method ClearScreen sets the entire screen to the same foreground/background pair.
To update only a single row’s colors, make a call to this method:

PUB SetLineColor(pRow, pFGroundColor, pBGroundColor)

...with the desired row, foreground, and background color where the colors are in
RGB(2:2:2:0) format. There will be more about color selection in the third example demo.

Example 2: Text Input with “Guess My Number?”
Load the sample application top-level file WMF_GuessMyNumber_010.Spin. It requires a
Propeller development board with VGA, PS/2 mouse and keyboard peripherals. Change the
base pin group for the VGA, mouse and keyboard in the CON block of the code as needed.
Also, the source assumes a 5 MHz crystal as well, so change as required. Figure 5 below
shows the demo running on a standard VGA-enabled LCD TV.

Figure 5: “Guess My Number?” Demo on VGA at 800x600 in 100x50 Character Mode

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 8 of 16

Parallax Semiconductor AN004

The “Guess my Number” application illustrates the use of the keyboard to input text. This is
a challenging part of programming: when there aren’t built-in input commands and
methods, you have to write them yourself. Moreover, creating a single line “editor” can be
challenging. With that in mind, the demo uses the template from the previous “Hello World”
demo and computes a random number, enters a loop, waits for user input, and tests against
the user’s input number. If the number entered is correct the user wins, if it is too high or
too low the loop continues. The initialization code in CreateAppGui is nearly the same,
however there is a bit of code at the end of it that computes a random number seed:

 ' seed the random number generator with something random such as signals on inputs
 ' this works quite well!
 repeat index from 0 to 1024
 gRandSeed += INA

This code generates a random number to “seed” Spin’s built-in pseudo-random number
generator operator which is based on a LFSR (linear feedback shift register) algorithm. The
operator is the question mark “?” and performs a forward or reverse shift using the
following syntax:

' forward-shift of variable x, refer to Propeller Reference Manual pg. 159
?x

' reverse-shift of variable x
x?

However, with a given seed, the pseudo-random numbers will always have the same
numerical sequence. Thus, one needs to “seed” the initial value of x with something random
to begin with. This can be quite challenging, but there usually are some common strategies
available. One is to start a counter, and when the user does something, that count
becomes the seed. However, if there is no initial user interaction, that won’t work.

Another strategy is to pick up noise in memory or I/O pins, which is random by nature. This
is the strategy used in the code snippet above: the random noise on all 32 I/O lines is
summed up and then the resulting 32-bit number generated becomes the seed. Of course, if
you set all inputs to a known state before calling this algorithm, then the results wouldn’t be
very random.

The call to CreateAppGui initializes the application. Once complete, the execution returns to
the Start method and enters into the main event loop which is the game of “Guess my
Number.”

PUB Start | randNumber, guessNumber

 ' first step create the GUI itself
 CreateAppGUI

 ' set terminal cursor initial position a little from top
 WMF.GotoXYTerm(0, 3)
 WMF.StringTermLn(string("VGA Terminal Services Demo | Guess My Number | (c) ←
 Parallax 2011"))

 ' MAIN EVENT LOOP - this is where you put all your code in an infinite loop...
 repeat

 ' main code goes here................

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 9 of 16

Parallax Semiconductor AN004

 ' Guess my number game to illustrate user input and string to numeric conversion
 WMF.NewlineTerm
 WMF.StringTermLn(string("I am thinking of a number from 1 to 100..."))

 ' get a new random number from generator
 ' || is absolute value operator, ? uses the seed as the value for a
 ' LFSR (linear feedback shift register)
 ' refer to Propeller Manual for more info on the ? operator
 randNumber := 1 + ||(?gRandSeed // 100)

 ' start guess off incorrectly
 guessNumber := -1

 ' enter into loop, once in here, the code blocks waiting for user
 ' input and the mouser cursor doesn't update anymore
 ' this is to be expected, and purposely shown here.
 repeat while (guessNumber <> randNumber)
 WMF.NewlineTerm
 WMF.StringTerm(string("Guess my number?"))

 ' get user input with local method
 GetStringTerm(@gStrBuff1, 4)

 ' convert input from string to decimal
 ' (here you might want to do input validation as well)
 ' this atoi is very smart, it can convert decimal, hex $, binary % numbers!
 guessNumber := WMF.atoi(@gStrBuff1, 4)

 ' test input
 if (guessNumber > randNumber)
 WMF.NewlineTerm
 WMF.StringTerm(string("Too high!"))
 elseif (guessNumber < randNumber)
 WMF.NewlineTerm
 WMF.StringTerm(string("Too Low!"))
 else
 WMF.NewlineTerm
 WMF.StringTermLn(string("Correct - You must be a genius!"))

' end PUB ---

The code is straightforward, so let’s focus on the user input elements. There are two
primary methods. One is GetStringTerm(@gStrBuff1, 4) which gets the user’s input and
stores it in the global character array gStrBuff1 while limiting the user input to 4
characters. The other is the method call that converts and validates (to a degree) the user
input: guessNumber :=WMF.atoi(@gStrBuff1, 4). The method call to atoi mimics the
standard C/Unix library ASCII-to-integer function and tries to convert the sent string to an
integer. This integer will be compared against the pre-computed random number.

The code for atoi can of course be found in the terminal services driver
WMF_Terminal_Services_***.spin. However, the GetStringTerm is a local method since it
requires the keyboard and the keyboard is instantiated locally, thus makes the method a
little easier to code. Later you might decide to push the GetStringTerm method down into
the terminal driver, it’s up to you. But, for now, the code is local and a copy is listed below
for review:

PUB GetStringTerm(pStringPtr, pMaxLength) | length, key
{{
DESCRIPTION: This simple method is a single line editor that allows user to enter keys from
the keyboard and then echoes them to the screen, when the user hits <ENTER> |
<RETURN> the method exits and returns the string. The method has simple editing and allows

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 10 of 16

Parallax Semiconductor AN004

<BACKSPACE> to delete the last character, that's it! The method outputs to the terminal.

PARMS: pStringPTr - pointer to storage for input string.
 pMaxLength - maximum length of string buffer.

RETURNS: pointer to string, empty string if user entered nothing.
}}

 ' current length of string buffer
 length := 0

 ' draw cursor
 repeat

 ' draw cursor
 WMF.OutTerm("_")
 WMF.OutTerm($08)

 ' wait for keypress
 repeat while (kbd.gotkey == FALSE)

 ' user entered a key process it

 ' get key from buffer
 key := kbd.key

 case key
 ASCII_LF, ASCII_CR: ' return

 ' null terminate string and return
 byte [pStringPtr][length] := ASCII_NULL

 return(pStringPtr)

 ASCII_BS, ASCII_DEL, ASCII_LEFT: ' backspace (edit)

 if (length > 0)
 ' move cursor back once to overwrite last character on screen
 WMF.OutTerm(ASCII_SPACE)
 WMF.OutTerm($08)
 WMF.OutTerm($08)

 ' echo character
 WMF.OutTerm(ASCII_SPACE)
 WMF.OutTerm($08)

 ' decrement length
 length--

 other: ' all other cases
 ' insert character into string
 byte [pStringPtr][length] := key

 ' update length
 if (length < pMaxLength)
 length++
 else
 ' move cursor back once to overwrite last character on screen
 WMF.OutTerm($08)

 ' echo character
 WMF.OutTerm(key)

' end PUB --

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 11 of 16

Parallax Semiconductor AN004

An input method is a bit tricky to write and you may need more functionality, but its main
purpose is to get a single string of input from the Propeller keyboard and allow some
modicum of editing. In this case, backspace and delete work; a more complex editor could
be developed that allowed the arrow keys, and copy and paste as well. Of course this would
take a lot more code, buffers, and state machines to track what’s going on. Nonetheless,
this little string input method works quite well with the VGA driver and terminal services
driver and leverages the terminal services printing functionality to operate. Thus, porting to
other terminals is very easy.

Example 3: The Art of Selecting Appropriate Colors for Text and GUI Applications
Load the sample application’s top-level file WMF_ColorThemeDemo.Spin. It requires a
Propeller development board with VGA, PS/2 mouse and keyboard peripherals. Change the
base pin group for the VGA, mouse and keyboard in the CON block of the code as needed.
Also, the source assumes a 5 MHz crystal as well, so change as required. Figure 6 below
shows the demo running on a standard VGA enabled LCD TV.

Figure 6: “Color Theme Demo” Demo on VGA at 800x600 in 100x50 Character Mode

The demo uses the local Propeller keyboard to select one of the color schemes numerically.
Simply enter the number of the theme and press <Enter>, and the theme will slowly
update.

There are entire books written about GUI and color design; it’s a complex field. It takes a a
true artist’s eye to select complementary colors, position, and design elements to make
them useful, easy to understand, and visually pleasing. In other words, color takes a lot of
creativity. Many programmers have trouble with colors and pick color schemes that they
personally like, or just don’t think about it and use ugly defaults. With that in mind, this
driver includes a number of simple 2-color schemes to help you get started without wasting
a lot of time trying out different colors. The schemes are denoted by two pairs of constants
in the terminal services driver WMF_Terminal_Services_***.spin in the format shown
below.

 ' basic white on black theme, looks like a DOS/CMD console terminal,
 ' white text on black background
 CTHEME_WHITENBLACK_FG = %%333
 CTHEME_WHITENBLACK_BG = %%000

 CTHEME_WHITENBLACK_INFO_FG = %%000
 CTHEME_WHITENBLACK_INFO_BG = %%333

Figure 7 shows each of the colors schemes and what they would look like on the VGA
monitor. Of course, the screen shots don’t do them justice, but you get the idea.

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 12 of 16

Parallax Semiconductor AN004

Figure 7: Screen Shots of the Pre-defined Color Themes in the Terminal Services Driver

CTHEME_WHITENBLACK

CTHEME_BLACKNWHITE

CTHEME_ATARI_C64

CTHEME_APPLE2

CTHEME_WASP

CTHEME_AUTUMN

CTHEME_CREAMSICLE

CTHEME_ORCHID

CTHEME_GREMLIN

Even though this VGA driver has 2 colors per row, you can have any 2 colors in any row;
and could build up a very colorful display/GUI. However, try to restrain yourself when it
comes to too many colors. Less is always better. Some suggested guidelines are:

 Never use red and blue together as background and foreground.
 Never use two colors that have weak contrast, for example grey on white.
 Select colors based on the application; warm, inviting colors such as for an organic

feel—browns, chocolate orange, etc.
 Use pastels with higher overall brightness settings for more feminine/friendly GUI

displays.
 Use simple solid backgrounds such as black, blue, brown, white for general

information display.
 Use more energetic colors such as red, yellow, and green backgrounds to grab

attention; however, these colors will really tire and strain users’ eyes over time.
 Use darker backgrounds with brighter foreground text to reduce eye strain. Black

text on white background used by most Windows applications actually strains the
eyes more. This is because the display is emitting light rather than reflecting. Thus,
books are printed with black text on a white background since they reflect light, but
using that theme on a computer does strain the eyes with a lot of constant
brightness.

 Don’t use your favorite colors, for example fluorescent green on purple won’t look
good to anyone, but you!

 Try your color selections on a few people and let them decide which is most pleasing
and appropriate.

 When in doubt stick to black on white, white on black, white on dark blue, or for
more of a old style terminal feel, green or red on black.

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 13 of 16

Parallax Semiconductor AN004

Finally, if you decide to design a display design that has an “information bar” or different
regions vertically with different colors, select inverse colors for those regions and/or colors
that still complement the larger color scheme. For example, don’t use a black background
with green text then make a single row with yellow text on cyan background. Those have no
relationship at all. All colors should look and feel complementary.

Summary
This application note has outlined a framework including terminal services and a display
driver for building VGA textual applications. Additionally, user input via keyboard has been
explored as well as color selection and some of the more artistic aspects of GUI design.

API Listing
The following is a complete API functional listing for WMF_Terminal_Services_010.spin. Look
to the source code for more details and complete parameter descriptions.

Initialization Method(s)
PUB Init(pVGABasePin, pTextCursXPtr) — Initializes the VGA driver as well as basic

terminal parameters.

Direct Frame Buffer Methods for General Rendering for Console and Controls
PUB PrintString(pStrPtr, pCol, pRow, pInvFlag) — This method draws a string

directly to the frame buffer.

PUB PrintChar(pChar, pCol, pRow, pInvFlag) — Draws a character directly to the frame

buffer avoiding the terminal system.

PUB ClearScreen(pFGroundColor, pBGroundColor) — Clear the screen at the memory

buffer level, very fast.

PUB SetLineColor(pRow, pFGroundColor, pBGroundColor) — Sets the sent row to the

given foreground and background color.

PUB DrawFrame(pCol, pRow, pWidth, pHeight, pTitlePtr, pAttr, pVgaPtr, pVgaWidth)

— This method draws a rectangular "frame" with title and shadows.

Text Console Terminal Methods
PUB StringTermLn(pStringPtr) — Prints a string to the terminal and appends a

newline.

PUB StringTerm(pStringPtr) — Prints a string to the terminal.

PUB DecTerm(pValue, pDigits) — Prints a decimal number to the screen.

PUB HexTerm(pValue, pDigits) — Prints the sent number in hex format.

PUB BinTerm(pValue, pDigits) — Prints the sent value in binary format with 0's and 1's.

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 14 of 16

Parallax Semiconductor AN004

PUB NewlineTerm - Moves the terminal cursor home and outputs a carriage return.

PUB PrintTerm(pChar) — Prints the sent character to the terminal console with scrolling.

PUB OutTerm(pChar) — Outputs a character to terminal. This is the primary interface

from the client to the driver in "terminal mode."

PUB SetColTerm(pCol) — Sets terminal x column cursor position.

PUB SetRowTerm(pRow) — Sets terminal y row cursor position

PUB GotoXYTerm(pCol, pRow) — Sets the x column and y row position of terminal

cursor.

PUB GetColTerm — Retrieves x column cursor position.

PUB GetRowTerm — Retrieves y row terminal cursor position.

String and Numeric Conversion Methods
PUB StrCpy(pDestStrPtr, pSourceStrPtr) — Copies the NULL terminated source string

to the destination string and null terminates the copy.

PUB StrUpper(pStringPtr) — Converts the sent string to all uppercase.

PUB ToUpper(pChar) — Returns the uppercase of the sent character.

PUB IsInSet(pChar, pSetStringPtr) — Tests if sent character is in sent string.

PUB IsSpace(pChar) — Tests if sent character is white space, cr, lf, space, or tab.

PUB IsNull(pChar) — Tests if sent character is NULL, 0.

PUB IsDigit(pChar) — Tests if sent character is an ASCII number digit [0..9], returns

integer [0..9]

PUB IsAlpha(pChar) — Tests if sent character is in the set [a...zA...Z].

PUB IsPunc(pChar) — Tests if sent character is a punctuation symbol !@#$%^&*()--

+={}[]|\;:'",<.>/?.

PUB HexToDec(pChar) — Converts ASCII hex digit to decimal.

PUB HexToASCII(pValue) — Converts a number 0..15 to ASCII 0...9, A, B, C, D, E, F.

PUB itoa(pNumber, pBase, pDigits, pStringPtr) - "C-like" function that converts

pNumber to string; decimal, hex, or binary formats.

PUB atoi(pStringPtr, pLength) — "C-like" function that tries to convert the string to a

number, supports binary %, hex $, decimal (default).

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 15 of 16

Parallax Semiconductor AN004

GUI & Graphics Series — Getting Started with VGA and Terminal Output v1.0 16 of 16

Time Methods
PUB DelayMilliSec(pTime) — Delays pTime milliseconds and returns.

PUB DelayMicroSec(pTime) — Delays pTime microseconds and returns.

Resources
The following example Spin objects are available for download as a zip archive from this
application note’s web page: www.parallaxsemiconductor.com/an004.

WMF_HelloWorld_010.Spin
WMF_GuessMyNumber_010.Spin
WMF_ColorThemeDemo_010.spin

WMF_Terminal_Services_010.spin
VGA_HiRes_Text_010.spin
Mouse_011.spin
Keyboard_011.spin

References
1. Propeller Object Exchange: http://obex.parallax.com

Revision History

Version 1.0: original document.

Parallax, Inc., dba Parallax Semiconductor, makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Parallax, Inc., dba Parallax Semiconductor, assume any liability arising out of the application or
use of any product, and specifically disclaims any and all liability, including without limitation consequential or incidental damages
even if Parallax, Inc., dba Parallax Semiconductor, has been advised of the possibility of such damages. Reproduction of this
document in whole or in part is prohibited without the prior written consent of Parallax, Inc., dba Parallax Semiconductor.

Copyright © 2011 Parallax, Inc. dba Parallax Semiconductor. All rights are reserved.
Propeller and Parallax Semiconductor are trademarks of Parallax, Inc. All other trademarks herein are the property of their
respective owners.

	GUI & Graphics Series — Getting Started with VGA and Terminal Output
	Introduction
	The VGA Driver Features in Detail
	Terminal Services and Console Support
	Summary
	API Listing
	Resources
	References
	Revision History

