

www.paral laxsemiconductor .com
sa les@paral laxsemiconductor.com
support@paral laxsemiconductor.com
phone: 916 ‐632 ‐4664 • fax:916 ‐624 ‐8003

Coroutines in Propeller Assembly Language v1.0 1 of 5

Application Note AN014

Coroutines in Propeller Assembly Language
Abstract: The multicore P8X32A does not require traditional interrupts to manage multiple
processes simultaneously; yet multi-tasking in a single core is still a handy option.
Coroutines in Propeller Assembly language can support a pair of independent tasks in a
single core (cog) through the use of the JMPRET instruction.

Introduction
The P8X32A Propeller has eight independent processors, called “cogs,” each of which can
support multiple cooperative tasks. The simplest way to implement multitasking in Propeller
Assembly language (PASM) for two tasks is to write the tasks as coroutines.

Coroutine Principle
Two programs are said to be “coroutines” when they take turns executing in such a way
that, when each gets its turn, it resumes from the point where it left off. In the Propeller,
coroutines take turns cooperatively, rather than by means of an interrupt, so each must
yield its turn to the other in a planned ping-pong fashion. Figure 1 illustrates the principle as
a flow chart.

Figure 1: Coroutines Flowchart

A

B

C

D

A

B

C

D

a

b

c

a

b

c

a

Start Flow of
Control

Coroutine 2Coroutine 1

A
a

B

b

C

c

D

a

Result

. . .

Parallax Semiconductor AN014

Here, execution bounces back and forth between Coroutine 1 and Coroutine 2 in such a
way that each gets a small slice of time before yielding to its complement. The result is an
interleaved execution that can give the appearance that each is operating independently in
real time.

Coroutines are often employed in programs that do both input and output independently,
such as those that perform full-duplex asynchronous serial I/O, or that monitor an encoder
and control a motor.

Propeller Coroutine Implementation
To understand how coroutines work in the Propeller, it is necessary to have a feel for the
Propeller’s execution sequence. Propeller instructions are processed in four steps:

1. Instruction fetch
2. Write result of previous instruction
3. Source operand fetch
4. Destination operand fetch

This means that if the next instruction is the destination of the current instruction’s result,
the old contents of that instruction slot will be read first before the new value is written.
Such behavior is what makes Propeller coroutine switching both simple and fast.

Consider the jmpret d,s instruction. This instruction transfers control to address s and
stuffs the address of the instruction following the jmpret into the source field of the
instruction at address d. The latter address most commonly holds a jmp instruction, so that
jmpret can be used to effect subroutine calls. In fact, the call instruction is just a jmpret
in disguise. For example, this:

'-------[Main Program]---

 ...
 jmpret subr_ret,#subr 'Call subr.
 ...

'-------[Subroutine]---

subr 'Subroutine entry point.
 ...
subr_ret jmp #0-0 'Return to caller....

...is exactly equivalent to this:

'-------[Main Program]---

 ...
 call #subr 'Call subr.
 ...

'-------[Subroutine]---

subr 'Subroutine entry point.
 ...
subr_ret ret 'Return to caller.

Coroutines in Propeller Assembly Language v1.0 2 of 5

Parallax Semiconductor AN014

Now, consider what would happen in the situation below, where the target of the call and
the return statement reside at the same location.

 call #swap
:nxt ...

swap
swap_ret ret

In this example, the following steps take place at the call:

1. The processor reads the instruction at swap (i.e. ret = jmp #ret_addr).
2. The processor stuffs the address of :nxt into the source field of swap, replacing

ret_addr.
3. The jmp #ret_addr instruction executes.

The next time a call issues to swap, execution will transfer to :nxt, and the caller’s return
address will get stuffed into swap’s source field. And so it goes, back-and-forth. This then is
the essence of Propeller coroutine switching.

Program Example
In this example program, two coroutines control two separate LEDs, blinking them at
different rates. (This program is designed to run on the Propeller Demo Board[1] but can be
modified for other platforms simply by changing values in the CON section as appropriate.)

CON 'Spin setup code

 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

 PING_LED = 16
 PONG_LED = 17

PUB Start

 ping_period := clkfreq * 11 / 16 'Set periods for both LEDs.
 pong_period := clkfreq * 13 / 16

 cognew(@pingpong, 0)

DAT 'PASM code

pingpong or dira,ping_mask 'Enable PING_LED output.
 or dira,pong_mask 'Enable PING_LED output.
 mov ping_time,cnt 'Initialize timers.
 mov pong_time,ping_time

'-------[ping coroutine]---

ping call #swap 'Give the pong coroutine a chance.
 'Pong coroutine returns here.
 mov acc,cnt 'Is it time to change state?
 sub acc,ping_time
 cmp acc,ping_period wc
 if_c jmp #ping ' No: Keep checking.

 add ping_time,ping_period ' Yes: Add to get the next time.
 or outa,ping_mask ' Turn LED on.

Coroutines in Propeller Assembly Language v1.0 3 of 5

Parallax Semiconductor AN014

ping_on call #swap 'Give the pong coroutine a chance.
 'Pong coroutine returns here.
 mov acc,cnt 'Is it time again to change state?
 sub acc,ping_time
 cmp acc,ping_period wc
 if_c jmp #ping_on

 add ping_time,ping_period ' Yes: Add to get the next time.
 andn outa,ping_mask ' Turn LED off.
 jmp #ping 'Loop back...

'-------[pong coroutine]---

pong mov acc,cnt 'Is it time to change state?
 sub acc,pong_time
 cmp acc,pong_period wc
 if_nc add pong_time,pong_period ' Yes: Add to get next time.
 if_nc xor outa,pong_mask ' Invert output pin.
 call #swap 'Give the ping coroutine a chance.
 jmp #pong 'Loop back...

'-------[coroutine swapper]---

swap
swap_ret jmp #pong 'Initialize swap to point to pong.

'-------[variables]---

ping_mask long 1 << PING_LED
pong_mask long 1 << PONG_LED
ping_period long 0-0
pong_period long 0-0

ping_time res 1
pong_time res 1
acc res 1

In this program, ping and pong do the same things with their respective LEDs. However,
ping explicitly turns its LED on and off, while pong simply toggles its LED. The ping
coroutine, with two distinct calls to swap, illustrates that execution picks up from where it
left off when the other coroutine returns.

Here are a couple other points worth noting:

1. Both ping and pong use the shared variable acc. This is okay, so long as the value of
a shared variable does not have to span a call to swap, because the complementary
coroutine might clobber it.

2. Never rely upon the states of the c and z flags across calls to swap. Without
extremely careful programming, the complementary coroutine will almost certainly
clobber them. If it should be necessary to retain the zero and/or carry flag state(s)
across a call to swap, use the flag save and restore instructions illustrated below.
(The $’s in restore_z and restore_c refer to the current instruction address.)

'Save Z and C in their restore instructions:

save_z muxnz restore_z,#1 'Save NZ bit in restore_z, bit 0.
 call #swap 'Swap to alternate coroutine.
restore_z test $,#0-0 wz 'Test to restore Z flag.

Coroutines in Propeller Assembly Language v1.0 4 of 5

Parallax Semiconductor AN014

Coroutines in Propeller Assembly Language v1.0 5 of 5

save_c muxc restore_c,#1 'Save C bit in restore_c, bit 0.
 call #swap 'Swap to alternate coroutine.
restore_c test $,#0-0 wc 'Test to restore C flag.

'Save Z and C in an external long:

save_z muxnz flags,#%10 'Save NZ bit in flags, bit 1.
save_c muxc flags,#%01 'Save C bit in flags, bit 0.
 call #swap 'Swap to alternate coroutine.
restore_z test flags,#%10 wz 'Restore Z from flags, bit 1.
restore_c test flags,#%01 wc 'Restore C from flags, bit 0.

 'or

restore_zc shr flags,#1 wz,wc,nr 'Restore Z and C from flags, bits 1 and 0.
 'Bits 31..2 of flags must be zero.

flags long 0

Resources
Download the coroutine example code from www.parallaxsemiconductor.com/an014.

References
1. Propeller Demo Board; Parallax #32100, www.parallax.com

Revision History
Version 1.0: original document.

Parallax, Inc., dba Parallax Semiconductor, makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Parallax, Inc., dba Parallax Semiconductor, assume any liability arising out of the application or
use of any product, and specifically disclaims any and all liability, including without limitation consequential or incidental damages
even if Parallax, Inc., dba Parallax Semiconductor, has been advised of the possibility of such damages. Reproduction of this
document in whole or in part is prohibited without the prior written consent of Parallax, Inc., dba Parallax Semiconductor.

Copyright © 2011 Parallax, Inc. dba Parallax Semiconductor. All rights are reserved.
Propeller and Parallax Semiconductor are trademarks of Parallax, Inc.

	Coroutines in Propeller Assembly Language
	Introduction
	Coroutine Principle
	Propeller Coroutine Implementation
	Program Example
	Resources
	References
	Revision History

