

Smart Sensors and
Applications

Student Guide

VERSION 1.0

WARRANTY
Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt
of product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-DAY MONEY BACK GUARANTEE
If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This
guarantee is void if the product has been altered or damaged. See the Warranty section above for instructions on
returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright 2006 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc. Duplication for educational use is permitted, subject to the following conditions: the text, or any portion
thereof, may not be duplicated for commercial use; it may be duplicated only for educational purposes when used
solely in conjunction with Parallax products, and the user may recover from the student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is
often less than typical retail duplication charges.

BASIC Stamp, Stamps in Class, Board of Education, Boe-Bot SumoBot, SX-Key and Toddler are registered
trademarks of Parallax, Inc. HomeWork Board, Propeller, Ping))) Parallax, and the Parallax logo are trademarks of
Parallax Inc. If you decide to use trademarks of Parallax Inc. on your web page or in printed material, you must state
that "(trademark) is a (registered) trademark of Parallax Inc.” upon the first appearance of the trademark name in
each printed document or web page. Other brand and product names are trademarks or registered trademarks of their
respective holders.

ISBN 1-928982-39-5

DISCLAIMER OF LIABILITY
Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and health,
resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter
how life-threatening it may be.

2ND PRINTING

INTERNET DISCUSSION LISTS
We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible
from www.parallax.com:

• Propeller chip – This list is specifically for our customers using Propeller chips and products.
• BASIC Stamp – This list is widely utilized by engineers, hobbyists and students who share their

BASIC Stamp projects and ask questions.
• Stamps in Class® – Created for educators and students, subscribers discuss the use of the Stamps in

Class curriculum in their courses. The list provides an opportunity for both students and educators to
ask questions and get answers.

• Parallax Educators – A private forum exclusively for educators and those who contribute to the
development of Stamps in Class. Parallax created this group to obtain feedback on our curricula and
to provide a place for educators to develop and obtain Teacher’s Guides.

• Robotics – Designed for Parallax robots, this forum is intended to be an open dialogue for robotics
enthusiasts. Topics include assembly, source code, expansion, and manual updates. The Boe-Bot®,
Toddler®, SumoBot®, HexCrawler and QuadCrawler robots are discussed here.

• SX Microcontrollers and SX-Key – Discussion of programming the SX microcontroller with
Parallax assembly language SX – Key® tools and 3rd party BASIC and C compilers.

• Javelin Stamp – Discussion of application and design using the Javelin Stamp, a Parallax module
that is programmed using a subset of Sun Microsystems’ Java® programming language.

ERRATA
While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us
know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials
and documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and
corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product
page’s free downloads for an errata file.

Table of Contents · Page i

Table of Contents

Preface..iii
Introduction and Author's Note .. iii
Overview...v
Before you Start..v
The Stamps In Class Educational Series .. vi
Foreign Translations ... vii
Special Contributors ... vii

Chapter 1: The Parallax Serial LCD Display ..1
LCDs in Products..2
The Parallax Serial LCD - Your Mobile Debug Terminal ..2
Activity #1: Connecting and Testing the LCD ...4
Activity #2: Displaying Simple Messages ...8
Activity #3: Timer Application..17
Activity #4: Custom Characters and LCD Animation ..19
Activity #5: Scrolling Text Across the Display...25
Summary ..34

Chapter 2: The Ping))) Ultrasonic Distance Sensor ..41
How Does the Ping))) Sensor Work?..41
Activity #1: Measuring Echo Time ..42
Activity #2: Centimeter Measurements ...46
Activity #3: Inch Measurements..49
Activity #4: Mobile Measurements ..51
Activity #5: Temperature's Effect on the Speed of Sound ..58
Summary ..61

Chapter 3: The Memsic Dual-Axis Accelerometer ..65
The MX2125 Accelerometer – How it Works..67
Activity #1: Connecting and Tilt-Testing the MX2125 ...68
Activity #2: Mobile Measurements ..71
Activity #3: Scaling Down and Offsetting Input Values ...76
Activity #4: Scaling to 1/100 g...83
Activity #5: Measuring 360° Vertical Rotation...85
Activity #6: Measure Tilt From the Horizontal ...98
Summary ..112

Chapter 4: The Hitachi HM55B Compass Module ...119
Interpreting the Compass Measurements...119
Activity #1: Connecting and Testing the Compass Module ..120
Activity #2: Compass Module Calibration ...128

Page ii · Smart Sensors and Applications

Activity #3: Testing the Calibration ...138
Activity #4: Improve Compass Measurements by Averaging143
Activity #5: Mobile Measurements..148
Summary ..159

Chapter 5: Accelerometer Gaming Basics .. 167
Activity #1: PBASIC Graphic Character Display...168
Activity #2: Background Store and Refresh with EEPROM..179
Activity #3: Tilt the Bubble Graph ...188
Activity #4: Game Control...196
SUMMARY ...205

Chapter 6: More Accelerometer Projects .. 211
Activity #1: Measure Heights of Buildings, Trees, Etc. ...211
Activity #2: Record and Playback ...213
Activity #3: Use EEPROM to Toggle Modes ..219
Activity #4: Remote Datalogging of Acceleration..223
Activity #5: RC Car Acceleration Study ..230
Activity #6: Skateboard Trick Acceleration Study ...240
Activity #7: Bicycle Distance...247
Summary ..255

Chapter 7: LCD Bar Graphs for Distance and Tilt .. 261
Activity #1: Custom Character Swapping ...261
Activity #2: Horizontal Bar Graphs for Ping))) Distance..271
Activity #3: Two-Axis Bar Graph for Accelerometer Tilt..281
Summary ..294

Appendix A: ASCII Chart ... 303
Appendix B: Parallax Serial LCD Documentation .. 305
Appendix C: Hexadecimal Character Definitions ... 317
Appendix D: Parts Listing ... 321
Index.. 323

Preface · Page iii

Preface

INTRODUCTION AND AUTHOR'S NOTE
The first time I saw the term "smart sensor" was in Tracy Allen's Applied Sensors text
(then known as Earth Measurements). Tracy aptly applied this term to the DS1620 digital
thermometer, which has built-in electronics that simplify microcontroller temperature
measurements. In addition, it can remember settings it receives from a microcontroller
and even function on its own as a thermostat controller.

In contrast to smart sensors, primitive sensors are devices or materials that have some
electrical property that changes with some physical phenomenon. An example of a
primitive sensor from What's a Microcontroller? is the cadmium sulfide photoresistor.
Its resistance changes with light intensity. With the right circuit and program,
microcontroller light measurements are possible. Other examples of common primitive
sensors are current/voltage output temperature sensors, microphone transducers, and even
the potentiometer, which is a rotational position sensor.

Inside every smart sensor is one or more primitive sensors and support circuitry. The
thing that makes a smart sensor "smart" is the additional, built-in electronics. The
electronics make these sensors able to do one or more of the following:

• Pre-process their measured values into meaningful quantities
• Communicate their measurements with digital signals and communication

protocols
• Orchestrate the actions of primitive circuits and sensors to "take" measurements
• Make decisions and initiate action based on sensed conditions, independent of a

microcontroller
• Remember calibration or configuration settings

During my first encounter with a smart sensor, I thought to myself, "Wow, an entire kit
full of these smart sensors with a book could be REALLY interesting! I sure hope
somebody does a kit and book like that soon..." Little did I know that "soon" would end
up being almost six years later, and that "somebody" would turn out to be me. And if one
of my bosses was to have told me back then that the kit would contain an accelerometer,
ultrasonic rangefinder, digital compass, and a serial LCD for mobile measurements, I
might just have come completely unglued. Since it was only recently possible for us to

Page iv · Smart Sensors and Applications

put together such an awesome group of components into a single kit, I'd have to say it
was worth the wait.

In keeping with the rest of the Stamps in Class tutorials, this book is a collection of
activities, some of which cover basics, some more advanced, and some demonstrate
applications or building blocks for various products and/or inventions. The first half of
the book introduces each sensor, along with some mobile LCD displayed measurements.
Then, the second half of the book has lots of applications for you to try, such as tilt video
games, custom measurement tools, and diagnostic devices for hobby and sports pursuits.
The page limit to keep these books inside our packaging is 350, and it was kind of
difficult to stop there. Additional Smart Sensor activities for the Boe-Bot robot can be
found in the Stamps in Class forum at www.parallax.com.

While this book covers the basics and demonstrates some example applications, it really
only scratches the surface of what you can do with these devices. The main purpose of
this book is to provide some building blocks and ideas for future class projects and
inventions. For example, after finishing chapter 3, our book reviewer Kris Magri put her
Board of Education with the accelerometer and LCD on her dashboard, and now her car
has a flatland acceleration meter along with the speedometer. With a few modifications
to the code, it could be made into a rollover warning system for 4-wheel drive. After
looking at the mechanical sighting device used to predict avalanche conditions in
mountainous areas based on hill incline, Ken Gracey whipped up the digital version in
one night with the same parts that went onto Kris’s dashboard.

The dashboard acceleration and avalanche risk meters are just two novel examples of the
many applications, projects, and inventions that the Smart Sensors kit and text can
inspire. We'd like to see what you do with your kit on the Stamps in Class forum. It
doesn't matter whether you think your project turned out to be cool, unique, corny, or
whatever. Just take a few minutes to post things you've made with theses smart sensors
to http://forums.parallax.com/forums/ → Stamps in Class. Make sure to include a few
snapshots, a brief description, and preferably the schematic and PBASIC program.

So, have fun with this kit and book, and we'll look forward to seeing your inventions on
the Stamps in Class forum.

Preface · Page v

OVERVIEW
The smart sensors kit contains four devices that, when used with the BASIC Stamp and
Board of Education or HomeWork Board, can be building blocks for a variety of
inventions and student projects. Here is a list of the devices:

• Parallax 2x16 Serial LCD
• Ping))) Ultrasonic Rangefinder
• Memsic 2125 2-Axis Accelerometer
• Hitachi HM55B Compass Module

Aside from providing both the equipment and how-to information for student projects,
this text has two major emphases that provide theory, examples, and required
calculations, which can be used to reinforce a variety of measurement,
physics/engineering, and trigonometric concepts. These emphases are:

• Math techniques for scaling raw sensor values into measurements that are
meaningful because they are expressed in common unit systems.

• Interpreting the projection of gravity and magnetic vector fields onto Cartesian
sensing axes.

BEFORE YOU START
To perform the experiments in this text, you will need to have your Board of Education
or HomeWork Board connected to your computer, the BASIC Stamp Editor software
installed, and to have verified the communication between your computer and your
BASIC Stamp. For detailed instructions, see What’s a Microcontroller? which is
available as a free download from www.parallax.com. You will also need the parts
contained in the Smart Sensors Parts Kit. For a full listing of system, software, and
hardware requirements, see Appendix D.

Page vi · Smart Sensors and Applications

THE STAMPS IN CLASS EDUCATIONAL SERIES
The Stamps in Class series of texts and kits provides affordable resources for electronics
and engineering education. All of the books listed are available for free download from
www.parallax.com. The versions cited below were current at the time of this printing.
Please check our web sites www.parallax.com or www.stampsinclass.com for the latest
revisions; we continually strive to improve our educational program.

Stamps in Class Student Guides:

What’s a Microcontroller? is the recommended entry level text to the Stamps In Class
educational series. Some students instead start with Robotics with the Boe-Bot, also
designed for beginners.

“What’s a Microcontroller?”, Student Guide, Version 2.2, Parallax Inc., 2004
“Robotics with the Boe-Bot”, Student Guide, Version 2.2, Parallax Inc., 2004

You may continue on with other Educational Project topics, or you may wish to explore
our other Robotics Kits.

Educational Project Kits:

The following texts and kits provides a variety of activities that are useful to hobbyists,
inventors and product designers interested in trying a wide range of projects.

“Smart Sensors and Applications”, Student Guide, Version 1.0, Parallax Inc.,
 2006
“Process Control”, Student Guide, Version 1.0, Parallax Inc., 2006
“Applied Sensors”, Student Guide, Version 1.3, Parallax Inc., 2003
“Basic Analog and Digital”, Student Guide, Version 1.3, Parallax Inc., 2004
 “Understanding Signals”, Student Guide, Version 1.0, Parallax Inc., 2003

Preface · Page vii

Robotics Kits:

To gain experience with robotics, consider continuing with the following Stamps in Class
student guides, each of which has a corresponding robot kit:

“IR Remote for the Boe-Bot”, Student Guide, Version 1.1, Parallax Inc., 2004
“Applied Robotics with the SumoBot”, Student Guide, Version 1.0, Parallax
 Inc., 2005
“Advanced Robotics: with the Toddler”, Student Guide, Version 1.2, Parallax
 Inc., 2003

Reference

This book is an essential reference for all Stamps in Class Student Guides. It is packed
with information on the BASIC Stamp series of microcontroller modules, our BASIC
Stamp Editor, and our PBASIC programming languages.

 “BASIC Stamp Manual”, Version 2.2, Parallax Inc., 2005

FOREIGN TRANSLATIONS
Parallax educational texts may be translated to other languages with our permission (e-
mail translations@parallax.com). If you plan on doing any translations please contact us
so we can provide the correctly-formatted MS Word documents, images, etc. We also
maintain a private discussion group for Parallax translators which you may join. This
will ensure that you are kept current on our frequent text revisions.

SPECIAL CONTRIBUTORS
Parallax Inc. would like to recognize their Education Team members: Project Manager
Aristides Alvarez, Technical Illustrator Rich Allred, Graphic Designer Larissa
Crittenden, Technical Reviewer Kris Magri, and Technical Editor Stephanie Lindsay. In
addition, thanks go to customer Steve Nicholson for test-driving most of the activities. As
always, special thanks go to Ken Gracey, the founder of Parallax Inc.’s Stamps in Class
educational program.

Page viii · Smart Sensors and Applications

 Chapter 1: Parallax Serial LCD Display · Page 1

Chapter 1: The Parallax Serial LCD Display

Displaying the information a sensor sends in a readable format has many uses, and in
some applications, it's all that matters. The digital thermometer is a common example
that can be found in many households. Inside each digital thermometer, there is a
temperature probe, a microcontroller, and a liquid crystal display (LCD) for displaying
the measurements. The BASIC Stamp microcontroller and Parallax Serial LCD shown in
Figure 1-1 can provide the microcontroller and display elements for this type of product.
This setup is also great for displaying mobile measurements, making it possible to
disconnect your board from the PC and Debug Terminal and field-test your smart
sensors.

Figure 1-1: BASIC Stamp, Board of Education, and Parallax Serial LCD

The activities in this chapter introduce some Parallax LCD basics, like connecting the
LCD to the BASIC Stamp, turning it on and off, placing its cursor, and displaying text
and digits. Later chapters will introduce creating and animating custom characters and
displaying scrolling messages.

Page 2 · Smart Sensors and Applications

LCDS IN PRODUCTS
The products shown in Figure 1-2 all have liquid crystal displays. They are easy to read,
and the smaller ones consume very little power. Think about how many products you
own with liquid crystal displays. Think also as you go through these activities about the
various BASIC Stamp projects, prototypes and inventions you've got in the works, and
how a serial LCD might enhance or help them to completion.

Figure 1-2: Product Examples with LCD Displays

Clockwise from top-left: cell phone, portable GPS unit, calculator, digital multimeter, office
clock, laptop computer, oscilloscope, office phone.

THE PARALLAX SERIAL LCD - YOUR MOBILE DEBUG TERMINAL
If you've worked through any of the other Stamps in Class texts, you're probably familiar
with what a valuable tool the Debug Terminal can be. The Debug Terminal is a window
that you can use to make your computer display messages it receives from the BASIC
Stamp. It's especially useful for displaying diagnostic messages and variable values,

 Chapter 1: Parallax Serial LCD Display · Page 3

making it easier to isolate program bugs. It's also a handy tool for testing circuits,
sensors, and more.

The Debug Terminal has one drawback, and that's the serial cable connection. Consider
how many times it wasn't convenient to have your board connected to the computer to
test a sensor, or find out what the Boe-Bot robot was "seeing" with its infrared object
detectors in another room. These are all situations that can be remedied with the Parallax
Serial LCD shown in Figure 1-3. Once you've built up a sensor circuit on the Board of
Education, you can use a battery and the Parallax Serial LCD to take the setup as far
away from your programming station as you want, all the while displaying sensor
measurements and other diagnostic information.

Figure 1-3
Parallax (2×16)
Serial LCD

The Parallax 2×16 Serial LCD has two sixteen-character-wide rows for displaying
messages. The display is controlled by serial messages from the BASIC Stamp. The
BASIC Stamp sends these messages from a single I/O pin that is connected to the LCD's
serial input. There are two versions, standard and backlit:

 Version Parallax Part #
 Standard 27976
 Backlit 27977

Serial Vs Parallel LCDs

The Parallel LCD is probably the most common type of LCD. It typically requires a minimum
of 6 I/O pins for the BASIC Stamp to control. Also, unless you are using a BASIC Stamp 2p,
2pe, or 2px, the code for controlling them tends to be more complex than serial LCD code.

The serial LCD is actually just a parallel LCD with an extra microcontroller. The extra
microcontroller on the serial LCD converts the serial messages from the BASIC Stamp to
the parallel messages that control the parallel LCD.

Page 4 · Smart Sensors and Applications

ACTIVITY #1: CONNECTING AND TESTING THE LCD
Along with the electrical connections and some simple PBASIC test programs for the
Parallax Serial LCD, this activity introduces the SEROUT command. It also demonstrates
how DEBUG is just a special case of SEROUT. This is especially useful for working with
your serial LCD because you can take many of the DEBUG command arguments and use
them with the SEROUT command to control and format the information your LCD
displays.

Parts Required

(1) Parallax 2×16 Serial LCD
(3) Jumper wires

In addition to the Parallax Serial LCD and three wires, it will be especially important to
have the Parallax Serial LCD Documentation (included as Appendix B in this text).
Although it's only a few pages, it has a long list of values you can send to your LCD to
make it perform functions similar to those you've used with the Debug Terminal. Cursor
control, carriage returns, clear screen and so on, all have their own special codes. In
some cases, these codes are identical to the ones for the Debug Terminal; in other cases,
they are quite different.

Building the Serial LCD Circuit

Connecting the Parallax Serial LCD to the BASIC Stamp is amazingly simple, as shown
in Figure 1-4. You only need to make three connections: one for power, one for ground,
and one for signal. The LCD's RX pin is for the signal and should be connected to a
BASIC Stamp I/O pin. In this activity, we will use P14. The LCD's GND pin should be
connected to Vss on the Board of Education, and the LCD's 5 V pin should be connected
to Vdd.

CAUTIONS: Wiring mistakes can damage this LCD.

Rev D and earlier models if this LCD had five pins. If you have a 5-pin model, please
see Figure B-1 on page 306 to verify the correct pins to use in the circuits in this
book.

The five-pin version is NOT pin compatible with Scott Edwards or Matrix Orbital
models. If you have used other brands of serial LCDs before, be aware that this LCD's
pinout is different. Don't make the mistake of using the same wiring that you used for other
models.

 Chapter 1: Parallax Serial LCD Display · Page 5

√ Disconnect power from your Board of Education.
√ Connect the Board of Education's Vss socket to the LCD's GND pin.
√ Connect the Board of Education's P14 socket to the LCD's RX pin, as shown in

Figure 1-4.
√ Connect the Board of Education's Vdd socket to the LCD's 5V pin
√ Do not turn the power back on yet.

Figure 1-4: Schematic and Wiring Diagram

Page 6 · Smart Sensors and Applications

Testing the Serial LCD

The Parallax Serial LCD has a self-test mode you can use to make sure it's in working
order and that the contrast is properly set. Figure 1-5 shows the back of the LCD module.
The switches labeled (SW1 and SW2) are for self-test mode and baud rate adjustment,
and there is a contrast adjustment potentiometer labeled “INCREASE CONTRAST.”

Figure 1-5
LCD Module -
Back View

√ The power to your board should still be off.
√ Find SW1 and SW2 on the underside of the LCD module shown in Figure 1-6 .
√ Set SW1 off.
√ Set SW2 off.
√ Turn the power back on now.

Figure 1-6
Setting Baud Rate
Switches to Self-
test Mode

√ When you turn the power back on, the LCD should display the text "Parallax,

Inc." on the top line (Line 0) and "www.parallax.com" on the bottom line
(Line 1), as you can also see in Figure 1-3. If you leave the LCD in this mode
for a while, a custom character reminiscent of 1980's video games will appear
and eat all the text.

 Chapter 1: Parallax Serial LCD Display · Page 7

√ If the display seems dim or looks blank, there is a contrast adjustment
potentiometer shown in Figure 1-7 that you can turn with a screwdriver. If the
display is already clear and all the characters look good, you probably don't need
to adjust it. If the characters are too dim, or they appear in gray boxes, adjusting
the potentiometer should help.

√ Adjust the contrast potentiometer if needed.

Figure 1-7
Contrast
Adjustment
Potentiometer

Adjusting the LCD to Receive Messages from the BASIC Stamp

Serial communication involves a baud rate. That's the number of bits per second (bps)
the sender transmits, and the receiver has to be ready to receive data at the same baud
rate. In this chapter's activities, the BASIC Stamp will be programmed to send messages
to the LCD at 9600 bps. You can adjust the same switches you used for the LCD self-test
to set this baud rate.

√ Turn the Board of Education power off.
√ Leave SW1 in the OFF position.
√ Set SW2 to ON as shown in Figure 1-8.
√ Turn the power back on now.

The screen will remain blank until you program the BASIC Stamp 2 to control the
display.

Page 8 · Smart Sensors and Applications

Figure 1-8
Baud Rate
Switches to 9600
bps

Figure 1-9 shows the mode table printed on the back of the Parallax Serial LCD. If you
want to send messages at other baud rates, (2400 or 19,200 bps), use this table and adjust
SW1 and SW2 accordingly.

Figure 1-9
Baud Rate Switch
Settings

ACTIVITY #2: DISPLAYING SIMPLE MESSAGES
As mentioned earlier, the commands that send text, numbers, formatters and control
codes (control characters) to a serial LCD are related to the DEBUG command. In fact, the
DEBUG command is just a special version of a more general command called SEROUT.
The SEROUT command has many uses, some of which include sending messages to serial
LCDs, other BASIC Stamp modules, and computers.

In this activity, you will program the BASIC Stamp to make the LCD display text
messages and numeric values. As a first step into animation, you will also modify the
programs to flash the text and numbers on and off. The SEROUT command will be your
tool for accomplishing these tasks. You will use the SEROUT command to send text,
numbers, control codes, and formatters to the Parallax Serial LCD. As you will soon see,
the text, numbers, and formatters are identical to ones you use with the DEBUG command.
The control codes will be a little different, but with some practice, they'll be just as easy
to use as CR, CLS, HOME, and CRSRXY. (If you are not familiar with CRSRXY, you can
learn more about it in Chapter 5, Activity #1.)

 Chapter 1: Parallax Serial LCD Display · Page 9

The minimal version of the SEROUT command's syntax looks like this:

SEROUT Pin, BaudMode, [DataItem, {DataItem, ...}]

In our programs, the Pin argument has to be 14 since the LCD's RX (receive data) pin is
connected to BASIC Stamp I/O pin P14.

The BaudMode argument is a value that tells the BASIC Stamp how fast to send the serial
data, and it determines some of the serial signal characteristics as well. The BASIC
Stamp Editor's Help program has tables that give the BaudMode values for common baud
rates and signals. It turns out that 84 is the BaudMode argument for 9600 bits per second
(bps), 8 data bits, no parity, true signal. This is exactly what the Parallax Serial LCD is
designed to receive.

DataItem arguments can be the text between quotes like "Hello". They can also be control
characters like CR, CLS, or values, with or without the formatters like DEC, BIN, and ?. If
they are sent with formatters, they are sent as the characters that represent the value. If
they are sent without formatters, they will be sent as values, like 22, 12, and 13. We can
send unformatted values like these to the LCD, which will interpret them as control
codes.

More about SEROUT

If you want to try using the Debug Terminal with SEROUT instead of DEBUG, first open it from
the toolbar via Run → Debug → New. Next, select Run → Identify to see which port your
BASIC Stamp is using. Then, in the Debug Terminal, set the Com Port to match. Note that
you can also change the Debug Terminal’s Baud Rate and other communication parameters.

There's lots more to learn about the SEROUT. Both the BASIC Stamp Manual and the
BASIC Stamp Editor's PBASIC Syntax Guide give the SEROUT command extensive
coverage. The BASIC Stamp Manual is available for free download from www.parallax.com
→ Downloads → Documentation. If your BASIC Stamp Editor supports PBASIC 2.5, you
probably already have the PBASIC Syntax guide. To access it, simply select Index from the
BASIC Stamp Editor's Help menu.

Simple Text Messages and Control Codes

Unlike the Debug Terminal, the serial LCD needs to be turned on with a command from
the BASIC Stamp. The LCD has to receive the value 22 from the BASIC Stamp to

Page 10 · Smart Sensors and Applications

activate its display. Here's the PBASIC command for sending the serial LCD the value
22:

SEROUT 14, 84, [22]

Used in this way, 22 is an example of an LCD control code. Here's a list of some more
basic control codes:

• 12 clears the display. Note: always follow with PAUSE 5 to give the LCD time to
clear the display.

• 13 is a carriage return; it sends the cursor to the next line.
• 21 turns the LCD off.
• 22 turns the LCD on.

Commands to turn the backlighting on and off (for the backlit LCD only):

Some LCDs have backlighting so that you can read them when it's dark. If you have the
backlit version of the Parallax Serial LCD (part number 27977), you can control the
backlighting with these values:

• 17 turns the backlighting on.

• 18 turns the backlighting off.

In PBASIC, CR is a predefined constant for the value 13. Whenever you use the
constant CR in a DEBUG command, it sends the value 13 to the Debug Terminal. The
Debug Terminal moves the cursor to the beginning of the next line whenever it receives the
value 13. In this case, the two commands below are the equivalent:

 SEROUT 14, 84, ["See this?", CR, "The LCD works!"]

 SEROUT 14, 84, ["See this?", 13, "The LCD works!"]

While this works with CR, it does not work for other predefined PBASIC constants.
For example, CLS, which is a predefined constant for the number 0, does not clear the LCD
display. The Parallax Serial LCD equivalent of CLS is 12. Likewise, HOME, which is a
predefined constant for the value 1, does not send the cursor to the top left "home"
character in the LCD display. The control code 128 does that for the Parallax Serial LCD.

Example Program - LcdTestMessage.bs2

√ Enter, save, and run LcdTestMessage.bs2. Verify that it displayed the message
"See this?" on Line 0 and "The LCD works!" on Line 1, as in Figure 1-10.

 Chapter 1: Parallax Serial LCD Display · Page 11

' Smart Sensors and Applications - LcdTestMessage.bs2
' Display a test message on the Parallax Serial LCD.

' {$STAMP BS2} ' Target device = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

SEROUT 14, 84, [22, 12] ' Initialize LCD
PAUSE 5

SEROUT 14, 84, ["See this?", 13, ' Text message, carriage return
 "The LCD works!"] ' more text on Line 1.
END ' Program end

Figure 1-10
Text Display

If the LCD didn't display properly: Double-check your wiring, your program, and the SW
settings on the back of the LCD. Also try disconnecting and reconnecting power to your
Board of Education. If needed, Go through the check-marked instructions leading up to this
program, and verify that each one was completed correctly.

Your Turn - Control Codes to Make the Display Flash On/Off

Remember that 22 turns the display on, and 21 turns it off? You can use these control
codes to make the text flash on and off.

√ Replace the END command in LcdTestMessage.bs2 with this code block.

DO ' Start DO...LOOP code block
 PAUSE 600 ' 6/10 second delay
 SEROUT 14, 84, [22] ' Turn display on
 PAUSE 400 ' 4/10 second delay
 SEROUT 14, 84, [21] ' Turn display off
LOOP ' Repeat DO...LOOP code block

√ Run the modified program and note the effect.

Page 12 · Smart Sensors and Applications

Display Numbers with Formatters

Most of the formatters that worked for displaying numbers with the Debug Terminal can
also be used with the Parallax Serial LCD. The DEC formatter is probably the most
useful, but you can also use DIG, REP, ASC, BIN, HEX, SDEC, and most of the others. For
example, if you want to display the decimal value of a variable named counter, you can
use commands like this:

SEROUT 14, 84, [DEC counter]

Example Program - LcdTestNumbers.bs2

Aside from demonstrating that you can display variable values on the serial LCD, this
program also shows what happens if the program sends more than 16 printable characters
to Line 0. It wraps to Line 1. Also, after printing sixteen more characters and filling
Line 1, the text will wrap again, to Line 0.

√ Enter, save, and run LcdTestNumbers.bs2

' Smart Sensors and Applications - LcdTestNumbers.bs2
' Display number values with the Parallax Serial LCD.

' {$STAMP BS2} ' Target device = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

counter VAR Byte ' FOR...NEXT loop index

SEROUT 14, 84, [22, 12] ' Initialize LCD
PAUSE 5 ' 5 ms delay for clearing display

FOR counter = 0 TO 12 ' Count to 12; increment at 1/2 s

 SEROUT 14, 84, [DEC counter, " "]
 PAUSE 500

NEXT

END ' Program end

√ Verify that the display resembles Figure 1-11.

 Chapter 1: Parallax Serial LCD Display · Page 13

Figure 1-11
Display Numbers

Your Turn - Other Formatters

√ Try replacing DEC with DEC2 and observe what happens.
√ Repeat with the ? formatter.
√ If necessary, look these commands up in either the BASIC Stamp Manual or the

BASIC Stamp Editor's Help. Also try them in the Debug Terminal.
√ What are the similarities and differences between using these formatters in the

Debug Terminal and using them in the Parallax Serial LCD?

Control Codes for Cursor Positioning

The LCD's control codes are different from the DEBUG command's control characters. For
example, HOME, and CRSRXY just don't have the same effect they do with the Debug
Terminal. However, there are cursor commands for the Parallax Serial LCD that you can
use to control the cursor's X and Y coordinates. You can also send the cursor to the top-
left "home position". Take a look at the LCD documentation's Command Set section
beginning on page 312. It lists all the valid control commands for the LCD; below are a
few examples from the list that control cursor position.

• 8 Cursor left
• 9 Cursor right
• 10 Cursor down (bottom line will wrap to top line)
• 128 to 143 Position cursor on Line 0, character 0 to 15
• 148 to 163 Position cursor on Line 1, character 0 to 15

Page 14 · Smart Sensors and Applications

The values from 128 to 143 and 148 to 163 are particularly useful. Figure 1-12 shows
where each value places the cursor. You can use values from 128 to 143 to place the
cursor at characters 0 to 15 on the top line of the LCD (Line 0). Likewise, you can use
values from 148 to 163 to place the cursor on characters 0 to 15 of the bottom line
(Line 1).

Figure 1-12
Text Display

After placing the cursor, the next character that you send to the LCD will be displayed at
that location. For example, here is a SEROUT command with an optional Pace argument
value set to 200 ms. This command will display the characters "L", "I", "N", "E", "-",
and "0", evenly spaced across the top line, one character every 200 ms.

SEROUT 14, 84, 200, [128, "L",
 131, "I",
 134, "N",
 137, "E",
 140, "-",
 143, "0"]

If displaying multiple characters after the giving an initial position, the LCD will still
automatically shift the cursor to the right after each character. For example, you can also
place the cursor on character 7 of the top line and then display "ALL", then move the
cursor to character 6 of the bottom line and display "DONE!" like this:

SEROUT 14, 84, [135, "ALL", 154, "DONE!"]

 Chapter 1: Parallax Serial LCD Display · Page 15

Here's a code block that will make the text "Line 1" slide across the display's bottom line,
from right to left.

FOR index = 9 TO 0
 ' IMPORTANT: Leave a space after the 1 in "Line 1 "
 SEROUT 14, 84, [148 + index, "Line 1 "]
 PAUSE 100
NEXT

Erasing Characters

You can always erase a character by placing the cursor where you want it and then sending
the space " " character to overwrite whatever might be there. This is why the text "Line 1 "
has a space after the "1" character, to erase the characters to its right as the text moves left.

Example Program - CursorPositions.bs2

This program introduces a few basic cursor placement tricks.

√ Look over CursorPositions.bs2 and try to predict what the program will make the
LCD display do. Also try to predict the sequence and timing.

√ Enter, save, and run CursorPositions.bs2.
√ Compare the LCD display's behavior to your predictions.

' Smart Sensors and Applications - CursorPositions.bs2
' Display number values with the Parallax Serial LCD.

' {$STAMP BS2} ' Target device = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

index VAR Nib ' FOR...NEXT loop index
character VAR Byte ' Character storage
offset VAR Byte ' Offset value

SEROUT 14, 84, [22, 12] ' Initialize LCD
PAUSE 500 ' 1/2 second delay

' Display evenly spaced characters on Line 0 every 200 ms.
SEROUT 14, 84, 200, [128, "L",
 131, "I",
 134, "N",
 137, "E",
 140, "-",
 143, "1"]
PAUSE 1000

Page 16 · Smart Sensors and Applications

' Shift "Line 1" across Line 1 right to left, then left to right.
FOR index = 9 TO 0
 ' IMPORTANT: Make sure there's a space after the 1 in "Line 1 ".
 SEROUT 14, 84, [148 + index, "Line 1 "]
 PAUSE 100
NEXT

FOR index = 0 TO 9
 ' IMPORTANT: Make sure there's a space between the " and the L character.
 SEROUT 14, 84, [148 + index, " Line 1"]
 PAUSE 250
NEXT

PAUSE 1000 ' 1 second delay

' Clear LCD, then display then Display "ALL DONE" in center and flash 5 times
SEROUT 14, 84, [12]: PAUSE 5 ' Clear LCD
SEROUT 14, 84, [135, "ALL", 13, 154, "DONE!"]' "ALL" and "DONE" centered

FOR index = 1 TO 4 ' Flash display 5 times
 SEROUT 14, 84, 500, [21, 22]
NEXT
END ' Program end

Your Turn - More Positioning

More elaborate displays can benefit from loops and lookup tables. Here is an example of
a "T E S T" display in a loop and with the help of a couple of LOOKUP commands. Note
that you can control the position of each character's placement by adjusting the values for
offset in the second LOOKUP command's list of values.

PAUSE 1000
SEROUT 14, 84, [12]: PAUSE 5 ' Clear display
SEROUT 14, 84, ["This is a", 13] ' Text & CR

FOR index = 0 TO 3 ' Character display sequence
 PAUSE 600
 LOOKUP index, ["T", "E", "S", "T"], character
 LOOKUP index, [1, 5, 9, 13], offset
 SEROUT 14, 84, [(148 + offset), character]
NEXT

√ Try it!

 Chapter 1: Parallax Serial LCD Display · Page 17

ACTIVITY #3: TIMER APPLICATION
This activity applies the techniques introduced in Activity #2 to an hour-minute-second
timer.

Displaying Time Elapsed

Here is a code block that starts the LCD, clears the screen, and places some display
characters on the LCD that will not change. The rest of the program can then display
changing hour, minute, and second number values next to the stationary "h", "m", and "s"
characters.

SEROUT 14, 84, [22, 12] ' Start LCD & clear display
PAUSE 5 ' Pause 5 ms for clear display

SEROUT 14, 84, ["Time Elapsed...", 13] ' Text + carriage return
SEROUT 14, 84, [" h m s"] ' Text on second line

For this application, control codes for cursor placement can be particularly useful. For
example, the cursor can be placed on Line 1, character 0 before sending the two-digit
decimal value of hours. The cursor can then be moved to Line 1, character 5 to display
the minutes, and then to Line 1, character 10 to display the seconds.

Here is a single SEROUT command that displays all three variable values, each at the
correct location:

 SEROUT 14, 84, [148, DEC2 hours,
 153, DEC2 minutes,
 158, DEC2 seconds]

The next example program applies this concept with just the BASIC Stamp module's
timing abilities. The accuracy isn't digital wristwatch quality by a long shot; however, it
is good enough for showing how the time display can work with character positioning.
For higher accuracy, try incorporating the DS1302 timekeeping chip. It's available from
www.parallax.com, just enter DS1302 into the search field.

Example Program - LcdTimer.bs2

This example program displays hours, minutes and seconds elapsed with the Parallax
Serial LCD. By pressing the RESET button on the Board of Education, you can restart
the timer.

√ Enter, save, and run LcdTimer.bs2.

Page 18 · Smart Sensors and Applications

√ Verify that the display works as advertised.

' Smart Sensors and Applications - LcdTimer.bs2
' Display elapsed time with BS2 and Parallax Serial LCD.

' {$STAMP BS2} ' Stamp directive
' {$PBASIC 2.5} ' PBASIC Directive

hours VAR Byte ' Stores hours
minutes VAR Byte ' Stores minutes
seconds VAR Byte ' Stores seconds

SEROUT 14, 84, [22, 12] ' Start LCD & clear display
PAUSE 5 ' Pause 5 ms for clear display

SEROUT 14, 84, ["Time Elapsed...", 13] ' Text + carriage return
SEROUT 14, 84, [" h m s"] ' Text on second line

DO ' Main Routine
 ' Calculate hours, minutes, seconds
 IF seconds = 60 THEN seconds = 0: minutes = minutes + 1
 IF minutes = 60 THEN minutes = 0: hours = hours + 1
 IF hours = 24 THEN hours = 0

 ' Display digits on LCD on Line 1. The values 148, 153, 158
 ' place the cursor at character 0, 5, and 10 for the time values.
 SEROUT 14, 84, [148, DEC2 hours,
 153, DEC2 minutes,
 158, DEC2 seconds]

 PAUSE 991 ' Pause + overhead ~ 1 second
 seconds = seconds + 1 ' Increment second counter
LOOP ' Repeat Main Routine

Your Turn - Defining Control Codes with Constants

Up to this point, the LCD control codes have been decimal values. However, when you
are writing or reading a long program, memorizing all those control code values can be
tedious. It's better to declare a constant for each control code at the beginning of the
program. Then, use the constant names instead of numbers. You can also do the same
with the BaudMode value, and then add a PIN directive for I/O pin P14 as well. Here is an
example:

LcdPin PIN 14 ' LCD I/O pin

T9600 CON 84 ' True, 8-bits, no parity, 9600

LcdCls CON 12 ' Form feed -> clear screen

 Chapter 1: Parallax Serial LCD Display · Page 19

LcdCr CON 13 ' Carriage return
LcdOff CON 21 ' Turns display off
LcdOn CON 22 ' Turns display on
Line0 CON 128 ' Line 0, character 0
Line1 CON 148 ' Line 1, character 0

These declarations will make your code easier to understand, which is especially
important if you decide to make changes to your program after not having looked at it for
several months. For example, the first SEROUT command can be rewritten like this:

SEROUT LcdPin, T9600, [LcdOn, LcdCls]

The SEROUT command in LcdTimer.bs2 that displays the numbers on Line 1 of the LCD
can be rewritten like this:

SEROUT LcdPin, T9600, [(Line1 + 0), DEC2 hours,
 (Line1 + 5), DEC2 minutes,
 (Line1 + 10), DEC2 seconds]

√ Save LcdTimer.bs2 under a new name.
√ Add descriptive constants to your program.
√ Replace as many numbers as you can with meaningful constant names.
√ Run your program and troubleshoot as needed.

ACTIVITY #4: CUSTOM CHARACTERS AND LCD ANIMATION
While not every picture saves a thousand words, even the ones that only save a sentence
or two are useful when you've got just 32 character spaces to work with. One example of
a useful picture is that hourglass cursor your computer screen uses to let you know the
program is busy. This simple animated icon works much better than a message
somewhere on the screen that says, "please wait, the program is busy...". This activity
uses an hourglass to introduce techniques for defining, storing, displaying, and animating
custom characters.

Custom Characters in the Parallax LCD

The Parallax Serial LCD has room set aside for eight custom characters shown in Figure
1-13. To display Custom Character 0, just send the LCD the value 0 with the SEROUT
command. Likewise, to display Custom Character 1, just send a 1, to display Custom
Character 2, send a 2, and so on. Note that Custom Characters 0 and 1 are pre-configured
to be the backslash and tilde. Here is an example SEROUT command that displays both of
them - SEROUT 14, 84, [0, 1].

Page 20 · Smart Sensors and Applications

Figure 1-13: Predefined Custom Characters O (Backslash) and 1 (Tilde)

Example Program: PredfinedCustomCharacters.bs2

This example sends the serial LCD the two commands to make it display Custom
Characters 0 and 1, the backslash "\" and tilde "~".

√ Enter and run the program, and verify that it displays the backslash and tilde.

' Smart Sensors and Applications - PredefinedCustomCharacters.bs2

' {$STAMP BS2}
' {$PBASIC 2.5}

SEROUT 14, 84, [22, 12] ' Initialize LCD
PAUSE 5 ' 5 ms delay for clearing display

' Display pre-defined custom characters: "\" (custom-character-0) and
' "~" (custom-character-1).

SEROUT 14, 84, [0, 1]

Defining (and Redefining) Custom Characters

The Parallax Serial LCD's custom characters are stored in its RAM. To define one of its
eight custom characters, your SEROUT command has to tell the LCD which of the eight
custom characters you are defining and then describe the on/off states of each pixel in the
character. Each character has 40 pixels, 8 pixels tall by 5 pixels wide.

Figure 6-14 shows the Define commands you can send the LCD to tell it which custom
character you are about to define. You can also think about it like this: to tell the LCD
which custom character you are defining, send the value of the custom character plus
248. For example, if you want to define Custom Character 0, send 248, if you want to
define Custom Character 1, send 249, and so on up to 255 for Custom Character 7.

 Chapter 1: Parallax Serial LCD Display · Page 21

 Figure 1-14: Custom Character Define Commands

After sending the code that tells the LCD which custom character you are about to define,
you have to then send eight bytes that describe the character. The LCD uses the lowest
five bits of each byte it receives to describe each five-pixel-wide line in the character.
Figure 1-15 shows an example of defining Custom Character 0 to be an hourglass that's
just been turned upside down.

SEROUT 14, 84, [248,

 %00000,

 %11111,

 %11111,

 %01110,

 %00100,

 %01010,

 %10001,

 %11111]

Figure 1-15
Redefining Custom Character 0

Notice how each successive value in the SEROUT command corresponds to a row of pixels
in the custom character. Notice also how the 1s correspond to black pixels, and the 0s
correspond to white.

The SEROUT custom character definitions are not permanent. Each time the LCD's
power is turned on and off the custom characters are erased. Since the BASIC Stamp and
LCD share the same power supply, the BASIC Stamp program also restarts when the power
is reset. It's a good practice to define custom characters you plan to use at the beginning of
a program, so that the BASIC Stamp can define the custom characters every time its power
is connected.

Here is another custom character definition of an hourglass with its four pixels of sand
drained into its bottom chamber. This definition uses 255 to tell the LCD to make it

Page 22 · Smart Sensors and Applications

Custom Character 7. It also uses a technique for drawing the characters with asterisks in
the comments to the right of the SEROUT command. Start with a SEROUT command with
all the binary values set to %00000, and then draw the character with asterisks in the
comment to the right. After it looks right, use the asterisks to dictate which zeros should
be changed to ones.

SEROUT 14, 84, [255, ' Define Custom Character 7
 %00000, '
 %11111, ' * * * * *
 %10001, ' * *
 %01010, ' * *
 %00100, ' *
 %01110, ' * * *
 %11111, ' * * * * *
 %11111] ' * * * * *

 Figure 1-16 shows how the two SEROUT commands just discussed will redefine the
LCD's custom characters.

 Figure 1-16: After Defining Custom Characters 0 and 7

Custom characters are sometimes defined with hexadecimal values. You will even see
this in example programs available for download from the Parallax Serial LCD product
pages at www.parallax.com. For information on how hexadecimal character definitions
work, try the activity in Appendix B: Hexadecimal Character Definitions.

With these new custom character definitions, you can write a loop to make the hourglass
toggle between empty and full, indicating that the user should wait. The DO...LOOP below
does this by first placing the cursor on Line 0, character 5 in the LCD. Then it displays
Custom Character 0, the hourglass that was just turned upside down. After a brief PAUSE,
the program sends the backspace command (8) to get the cursor back to character 5.
Then, it sends Custom Character 7, the hourglass with the sand drained into the base. By
repeating this sequence, it looks as though the hourglass is turned upside-down, drained,
turned again, drained again, and so on.

 Chapter 1: Parallax Serial LCD Display · Page 23

DO

 SEROUT 14, 84, [133] ' Cursor -> Line 0, char
 SEROUT 14, 84, [0] ' Display Custom Character 0
 PAUSE 1250 ' Delay for 1.25 seconds
 SEROUT 14, 84, [8] ' Backspace
 SEROUT 14, 84, [7] ' Display Custom Character 7
 PAUSE 1500 ' Delay for 1.50 seconds

LOOP

Example Program: Hourglass.bs2

This program defines and displays the hourglass custom characters just discussed.

√ Enter, save, and run the program.
√ Verify that it alternately displays the two hourglass characters at the sixth

character in the LCD's top row.

' -----[Title]--
' Smart Sensors and Applications - Hourglass.bs2
' Define and display custom characters.

' {$STAMP BS2} ' Target device = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[Initialization]---

PAUSE 250 ' Debounce power supply

SEROUT 14, 84, [248, ' Define Custom Character 0
 %00000, '
 %11111, ' * * * * *
 %11111, ' * * * * *
 %01110, ' * * *
 %00100, ' *
 %01010, ' * *
 %10001, ' * *
 %11111] ' * * * * *

SEROUT 14, 84, [255, ' Define Custom Character 7
 %00000, '
 %11111, ' * * * * *
 %10001, ' * *
 %01010, ' * *
 %00100, ' *
 %01110, ' * * *
 %11111, ' * * * * *
 %11111] ' * * * * *

Page 24 · Smart Sensors and Applications

SEROUT 14, 84, [22, 12] ' Turn on display and clear
PAUSE 5 ' 5 ms delay for clearing display

' -----[Main Routine]---

DO

 SEROUT 14, 84, [133] ' Cursor -> Line 0, char
 SEROUT 14, 84, [0] ' Display Custom Character 0
 PAUSE 1250 ' Delay for 1.25 seconds
 SEROUT 14, 84, [8] ' Backspace
 SEROUT 14, 84, [7] ' Display Custom Character 7
 PAUSE 1500 ' Delay for 1.50 seconds

LOOP

Your Turn

Figure 1-17 shows the custom characters depicting the grains of sand in the hourglass
moving from the top to the bottom.

Figure 1-17: Custom Characters for Animated Hourglass

√ Save Hourglass.bs2 as HourGlassYourTurn.bs2.
√ Expand the Initialization routine so that it defines all eight custom characters as

shown in Figure 1-17.
√ Modify the Main Routine so that it gives an animated hourglass effect as the

grains of sand fall from top to bottom.

Here is a Main Routine you can also try for animating the eight custom characters once
you have updated the Initialization section:

DO

 ' Place cursor at character 5, and display Custom Character 0.
 SEROUT 14, 84, 100, [133, 0]
 PAUSE 750 ' 0.750 second delay

 Chapter 1: Parallax Serial LCD Display · Page 25

 ' Backspace, Custom Character 1, backspace, Custom Character 2, etc.
 ' optional Pace argument of 100 sends each value every 1/10 of a second.
 SEROUT 14, 84, 100, [8, 1, 8, 2, 8, 3, 8, 4, 8, 5, 8, 6, 8, 7, 8]
 PAUSE 750

LOOP

√ Try it!

Even though the LCD only stores 8 custom characters at a time, your program can
store as many as you need. Remember, your program can redefine any of the custom
characters at any time. If your application needs twenty custom characters, your PBASIC
program can store 20 custom characters and redefine them for the LCD as needed.

You can display the hourglass with just one custom character. The entire hourglass
animation can be done with just one custom character. The trick is to redefine the custom
character between each time the display is updated.

ACTIVITY #5: SCROLLING TEXT ACROSS THE DISPLAY
If your message is too wide for the 16 character display, scrolling the text across the
display can make it work. Figure 1-18 shows an example. With scrolling, the message
begins at the far right of the display. Then, the text shifts across the display one letter at a
time.

Figure 1-18
Scrolling Text

The scrolling code introduced in this activity is quite different from the example program
in Activity #2 that made "Line 1" move across the display. The main reason it's different
is because the message in Activity #2 stopped at the leftmost character. When the

Page 26 · Smart Sensors and Applications

message is larger than the display window, stopping at the left edge of the display will
keep the rest of the message from becoming visible.

To get text to scroll across just one line, the program has to start with the first character in
a message and display it at the rightmost character. After a short delay, the program has
to move the cursor to the second character from the right, and print both the first and
second characters. It has to continue this process until the cursor gets to the left of the
display. Then, the cursor has to be repeatedly repositioned to that same location as
sixteen-character portions of the message are displayed, making the message appear to
shift from right to left, one character at a time.

The programming technique for this process is called sliding-window. Aside from being
useful for the Parallax LCD, sliding window is what you see when you scroll text up and
down in programs like the BASIC Stamp Editor and your web browser. It's also used in
programs for transmitting and collecting TCP/IP packets. So every time you open your
web browser, there's more than one instance of sliding-window code at work in the
background.

A Configurable Scrolling Subroutine

This next example program features a subroutine that is convenient for displaying a
variety of scrolling messages with minimal work. All it involves is putting the messages
in DATA directives preceded with Symbol names, setting a few variables, and then calling
the scrolling subroutine.

Here are some example DATA directives.

Message1 DATA @ 2, "Message "
Message2 DATA "again"
Message3 DATA "Larger message, going faster"
Message4 DATA

The first text message begins at an EEPROM address equal to the value of the Message1
symbol, which has been set to 2 with the DATA directive's optional @Address argument.
The address after the end of Message1 is EEPROM address 11. This is denoted by the
Message2 label, which is also the beginning of the second message. Since you can set
variables equal to the values of Message1 to Message4, it's an especially flexible system
for a variety of messages.

 Chapter 1: Parallax Serial LCD Display · Page 27

The next example program also has variables you can set to configure different window
locations, widths, and increments. After setting these variable values, you can then call
the Scroll_Message subroutine, and it does the rest of the work. Here is an example of
a code block that makes the subroutine display all the characters between the Message1
and Message2 labels in the middle four characters on the LCD's top line.

messageStart = Message1: messageEnd = message2
windowLeft = 134: windowRight = 137
increment = 1
GOSUB Scroll_Message

The beginning and ending EEPROM addresses are stored in the messageStart and
messageEnd variables. The starting and ending LCD character addresses that define the
window are stored in windowLeft and windowRight. Last but not least, the increment
variable is set to the number of characters the text moves each time it shifts. With all
those values set, the Scroll_Message subroutine has all it needs to do its job.

There are three more examples in the next program's Main Routine. Not all the examples
assign values to all the variables. Some of the examples only set a few values because
they are recycling values that were assigned before the previous subroutine call. For
example, the value of the increment variable was set to 1 before the first subroutine call.
Since the Scroll_Message subroutine doesn't make any changes to that variable, the
value 1 doesn't need to be reassigned to it before calling the Scroll_Message subroutine
again.

' Change the values of various configuration variables
' and demonstrate the effect on the display with each change.
windowLeft = 131: windowRight = 140
GOSUB Scroll_Message

Here is the last example in the Main Routine. Note that it takes up the better part of the
second line and scrolls two characters at a time:

messageStart = Message3: messageEnd = message4
windowLeft = 150: windowRight = 161
increment = 2
GOSUB Scroll_Message

Page 28 · Smart Sensors and Applications

Example Program - TestScrollingSubroutine.bs2

√ Review the code blocks in the Main Routine of the program and predict how
wide the scrolling window will be, what text will be displayed, and how many
characters at a time the message will shift.

√ Enter, save, and run TestScrollingSubroutine.bs2.
√ Compare your predictions to what actually occurred and reconcile any

differences.

' -----[Title]--
' Smart Sensors and Applications - TestScrollingSubroutine.bs2
' Scroll a text message across a four character wide window in the LCD.

' {$STAMP BS2} ' BASIC Stamp Directive
' {$PBASIC 2.5} ' PBASIC Directive

' -----[DATA Directives]--

Message1 DATA @ 2, "Message "
Message2 DATA "again"
Message3 DATA "Larger message, going faster..."
Message4 DATA
' -----[I/O Definitions]--

LcdPin PIN 14 ' LCD I/O pin

' -----[Constants]--

T9600 CON 84 ' True, 8-bits, no parity, 9600
LcdCls CON 12 ' Form feed -> clear screen
LcdCr CON 13 ' Carriage return
LcdOff CON 21 ' Turns display off
LcdOn CON 22 ' Turns display on
Line0 CON 128 ' Line 0, character 0
Line1 CON 148 ' Line 1, character 0

TimeOn CON 250 ' Character on time
TimeOff CON 0 ' Character fade time

' -----[Variables]--

' Functional variables for Scroll_Message subroutine.

cursorStart VAR Byte ' First character location
head VAR Byte ' Start of displayed text
tail VAR Byte ' End of displayed text
pointer VAR Byte ' EEPROM address pointer
character VAR Byte ' Stores a character

 Chapter 1: Parallax Serial LCD Display · Page 29

' Configuration variables for Scroll_Message subroutine.

increment VAR Nib ' Characters to shift
windowRight VAR Byte ' Rightmost character address
windowLeft VAR Byte ' Leftmost character address
messageStart VAR Byte ' Start EEPROM address
messageEnd VAR Byte ' End EEPROM address

' -----[Initialization]---
SEROUT LcdPin, T9600, [LcdOn, LcdCls] ' Turn on display & clear
PAUSE 5 ' Delay 5 ms

' -----[Main Routine]---

' Set values of configuration variables, then call Scroll_Message.

messageStart = Message1: messageEnd = message2
windowLeft = 134: windowRight = 137
increment = 1
GOSUB Scroll_Message

' Change the values of various configuration variables and demonstrate the
' effect on the display with each change.

windowLeft = 131: windowRight = 140
GOSUB Scroll_Message

messageStart = Message1: messageEnd = message3
GOSUB Scroll_Message

messageStart = Message3: messageEnd = message4
windowLeft = 150: windowRight = 161
increment = 2
GOSUB Scroll_Message

END

' -----[Subroutine - Scroll_Message]--

Scroll_Message:

 cursorStart = windowRight - increment + 1 ' Rightmost character in window
 head = 0 ' Initialize head and tail
 tail = increment - 1 ' of message

 ' Scrolling loop
 DO WHILE tail<(MessageEnd-MessageStart)+(windowRight-windowLeft+increment)

 SEROUT LcdPin, T9600, [cursorStart] ' Rightmost character in window

 FOR pointer = head TO tail ' Clear old characters.

Page 30 · Smart Sensors and Applications

 SEROUT LcdPin, T9600, [" "]
 NEXT

 PAUSE timeOff ' Let characters fade away

 SEROUT LcdPin, T9600, [cursorStart] ' Rightmost character in window

 ' This FOR...NEXT loop refreshes the message, shifted increment characters
 ' to the left each time through until the end of the EEPROM message.
 ' Then, it fills the display with space characters as the remainder of the
 ' message shifts out to the window.
 FOR pointer = head TO tail
 IF (pointer <= (MessageEnd - MessageStart - 1)) THEN
 READ pointer + MessageStart, character
 ELSE
 character = " "
 ENDIF
 SEROUT LcdPin, T9600, [character]
 NEXT

 PAUSE timeOn ' Give the characters some time

 ' Increment until at window-left
 cursorStart = cursorStart - increment MIN windowLeft
 tail = tail + increment ' Increment tail pointer

 ' Increment head pointer if tail pointer > window width.
 IF tail > (windowRight - windowLeft) THEN
 head = head + increment
 ELSE
 head = 0
 ENDIF
 LOOP ' Repeat scrolling loop

 RETURN

The Scroll_Message Subroutine's Sliding Window

Let's say the shifting text display window in your LCD is four characters wide on the top
row because there are other messages that need to be displayed at all times on the LCD.
The task at hand is to slide the text through the smaller window without overprinting any
of the characters displayed outside it.

 Chapter 1: Parallax Serial LCD Display · Page 31

Figure 1-19 shows the setup and Step 0 of a four-character wide window. In the setup
step, nothing is displayed in the window. Then, Step 0 places the cursor in position 137,
and displays character 0, the "M".

Figure 1-19: Shifting Text Through Window, Setup and Step 0

√ Figure 1-20 shows Steps 1 and 2. After waiting a moment for the "M" to be
visible, the cursor has to be placed at position 136, and then characters 0 and 1,
"Me", can be displayed. Next, move the cursor to 135, and display characters 0
to 2, "Mes".

Figure 1-20: Shifting Text Through Window, Steps 1 and 2

Page 32 · Smart Sensors and Applications

√ Figure 1-21 shows Steps 3 and 4. Moving the cursor to position 134 and
displaying characters 0 to 3, "Mess" is still the same sequence, but when the "M"
leaves the window, the sequence has to change. The cursor's starting point, or
head pointer, can no longer advance to the left; it has to stay at position 134.
Also, instead of displaying characters 0 to 3, characters 1 to 4, "essa", have to be
displayed.

Figure 1-21: Shifting Text Through Window, Steps 3 and 4

√ The starting cursor position has to remain at 134 while the head and tail
characters continue to advance: 2 to 5 - "ssag", 3 to 6 - "sage". The window
keeps sliding, and Figure 1-22 shows the second-to-last step of characters 6 to 9
- "e" followed by three spaces, and finally the last step, 7 to 10 - four space
characters.

Figure 1-22: Shifting Text Through Window, Steps 9 and 10

 Chapter 1: Parallax Serial LCD Display · Page 33

The TestScrollingSubroutine.bs2 uses the variables shown in Figure 1-23 for the sliding
window. The cursorStart variable stores the position that the cursor is placed each
time before it starts printing the characters in the message. In the figure, cursorStart
stores the value 135. The next time the text shifts to the left, it will store 134. Two
variables, head and tail, store the beginning and ending addresses of the text that will
fit in the message window. In the figure, head stores 0, and tail stores 2. The pointer
variable will be used by the READ command to get the right character, and the character
variable will store the character the READ command retrieves from EEPROM.

Figure 1-23: Variables from TestScrollingRoutine.bs2.

In Figure 1-23, pointer is pointing at character 1 in the sequence, which is "e". A
FOR...NEXT loop uses the pointer variable to read each of the characters in EEPROM,
from head to tail and then display each with the SEROUT command. Each time the text
shifts to the right, the new text has to overwrite the old text with the same head to tail
loop.

Page 34 · Smart Sensors and Applications

SUMMARY
The liquid crystal display (LCD) is used in a tremendous variety of products. Simple
character displays like the Parallax 2X16 serial LCD can substitute for the Debug
Terminal's display features, which is especially useful when the test site for your project
is not within reach of a serial cable and PC.

The Parallax Serial LCD has a contrast adjustment potentiometer on the back, along with
two switches you can use to select from three different baud rates and a self-test mode.
There are three pins on the back of the Parallax Serial LCD, as only three connections are
needed to operate it: Vdd, RX, and Vss.

The Parallax Serial LCD has an extensive command set, and a full list of these commands
is included in the Parallax Serial LCD Product Documentation (Appendix B). This
chapter introduced commands for turning the display on and off, clearing it, cursor
placement, backlighting control for the backlit model, and character display.

The Parallax Serial LCD depends on serial messages from the BASIC Stamp that are
programmed into it by the PBASIC SEROUT command. Many of the DEBUG command's
features can be used with the SEROUT command, including text between quotation marks
and formatters like DEC, BIN, DIG, and so on. These all have LCD results that are similar
to the Debug Terminal. The LCD's control codes are different from and more numerous
than the ones used with the Debug Terminal. Instead of trying to use CR, CLS, CRSRXY,
etc, use the control code values listed in the LCD's command set. It's also a good idea to
make constants for these values, such as LcdCls CON 12, LcdClr CON 13, LcdOn CON
22, LcdOff CON 21, and so on.

The Parallax Serial LCD has eight custom characters, 0 to 7. You can display any one of
them by sending its value to the LCD. For example, SEROUT 14, 84, [3] makes the
LCD print Custom Character 3. The commands to define custom characters range from
248 to 255. Sending 248 instructs the LCD to define Custom Character 0, 249 defines
Custom Character 1, and so on, up to 255, which defines Custom Character 7. After
sending a Define Custom Character command, the next eight bytes are binary values, the
lower five bits of which define the pixels in a given line of pixels. A 1 makes the pixel
black, and a 0 makes it white.

 Chapter 1: Parallax Serial LCD Display · Page 35

This chapter also introduced a subroutine for scrolling text from right to left inside a
window. This subroutine looks for start and stop addresses that correspond to Symbol
address labels that precede the DATA directives that contain the text to be displayed. The
way the subroutine's text is displayed is defined by five variables: messageStart,
messageEnd, windowLeft, windowRight, and increment. The messageStart and
messageEnd variables store the starting and ending EEPROM addresses of the text to be
displayed. The windowLeft and windowRight variables store the start and end LCD
character addresses that define the window, and the increment variable stores how many
characters at a time the message is shifted from right to left.

Questions

1. What are three devices you use every day that display information with LCDs?
2. What do the 2 and 16 indicate in the term 2x16 LCD?
3. What command do you use to send information to the Parallax Serial LCD?
4. How are the DEBUG and SEROUT commands different?
5. What position do SW1 and SW2 need to be in if you want to write a program

that sends messages to the Parallax Serial LCD at a rate of 19,200 bps?
6. What component do you adjust to change the LCD's display contrast?
7. What SEROUT command will clear the display?
8. What special considerations come into play when using the DEBUG command's

CR, CLS, and HOME control codes with the Parallax Serial LCD?
9. What three arguments do you need for a minimal SEROUT command?
10. How can you make the text displayed in the LCD flash on and off?
11. What ranges of values can you send to the LCD to place the cursor?
12. What character resides in Custom Character 1 by default?
13. How do you display a custom character after it has been defined?
14. What are some applications of sliding window?

Exercises

1. Make the message "Hello" appear in the Debug Terminal without using the
DEBUG command.

2. Display the message "Hello" centered on the top line of the LCD.
3. Make the message "Hello" flash on and off once every second.
4. Write a command to make the message "Start" appear at the beginning of Line 0

and the message "Finish" appear on the right side of Line 1.

Page 36 · Smart Sensors and Applications

5. Write a SEROUT command to send the LCD messages when SW1 and SW2 are
both ON.

6. Write a SEROUT command to send the LCD a message when SW1 is ON and
SW2 is OFF.

Projects

1. Write a program that displays a six-line message. It starts by displaying lines 0
and 1 with a pause. Then it advances to lines 2 and 3, again with a pause. And
finally, it displays lines 4 and 5.

2. Write a program that prints three copies of a custom character. Then, redefine
the custom character. What happens to all three copies of the custom character?

 Chapter 1: Parallax Serial LCD Display · Page 37

Solutions

Q1. Wrist watch, calculator, telephone (answers will vary).
Q2. Two rows of text, each row is 16 characters wide.
Q3. The SEROUT command.
Q4. When using the SEROUT command you must specify the pin number and the baud

rate.
Q5. Both SW1 and SW2 should be in the ON position for 19,200 bps.
Q6. A potentiometer.
Q7. The command SEROUT 14, 84, [12] will clear the display.
Q8. The pre-defined PBASIC constants such as CR, CLS, and HOME are not necessarily

defined correctly to work with the serial LCD.
Q9. SEROUT requires Pin, Baudmode, and DataItem arguments.
Q10. Print the text, then turn the display on and off using control characters 21 and 22.
Q11. From 128-143 for Line 0, and 148-163 for Line 1.
Q12. The backslash.
Q13. Send the LCD the value of the custom character with the SEROUT command.

For example, SEROUT 14, 84, [4] will display Custom Character 4.
Q14. LCD screens, even those large screens you see at train stations, gates in airports,

or at sporting events, as well as scrolling text in Windows applications and
TCP/IP packets.

E1. From the BASIC Stamp Editor Help file: “For the built-in serial port set the Tpin
argument to 16 in the SEROUT command.”
' Smart Sensors and Applications - Ch1_Ex01.bs2
' {$STAMP BS2}
' {$PBASIC 2.5}

DEBUG "Hello, this is DEBUG", CR
SEROUT 16, 84, ["Hello - This is SEROUT", CR]

E2. Example solution:

' Smart Sensors and Applications - Ch1_Ex02.bs2
' {$STAMP BS2}
' {$PBASIC 2.5}

SEROUT 14, 84, [22, 12] ' Turn on, clear screen
' 1234567890123456
SEROUT 14, 84, [" Hello ", CR] ' Center text on top line

Page 38 · Smart Sensors and Applications

E3. Example solution:
' Smart Sensors and Applications - Ch1_Ex03.bs2
' Make message flash on and off once per second
' {$STAMP BS2}
' {$PBASIC 2.5}

SEROUT 14, 84, [22, 12] ' Turn on, clear screen
' 1234567890123456
SEROUT 14, 84, [" Hello ", CR] ' Center text on top line

DO
 SEROUT 14, 84, [21] ' Turn screen off
 PAUSE 500
 SEROUT 14, 84, [22] ' Turn screen on
 PAUSE 500
LOOP

E4. Example solution:

' Smart Sensors and Applications - Ch1_Ex04.bs2
' Print Start beginning of Line1, Finish end of Line2
' {$STAMP BS2}
' {$PBASIC 2.5}

SEROUT 14, 84, [22, 12] ' Turn on, clear screen
SEROUT 14, 84, ["Start"] ' Print on Line 0
SEROUT 14, 84, [158] ' Line2,6th char from rt edge
SEROUT 14, 84, ["Finish"] ' Print rt edge of Line 1

E5. Example solution:

' Smart Sensors and Applications - Ch1_Ex05.bs2
' Print at 19200 baud
' {$STAMP BS2}
' {$PBASIC 2.5}

SEROUT 14, 32, [22, 12] ' Turn on, clear screen
SEROUT 14, 32, ["Using 19200 bps"] ' Print on Line 0

E6. Example solution:

' Smart Sensors and Applications - Ch1_Ex06.bs2
' Print at 2400 baud
' {$STAMP BS2}
' {$PBASIC 2.5}

SEROUT 14, 396, [22, 12] ' Turn on, clear screen
SEROUT 14, 396, ["Using 2400 bps"] ' Print on Line 0

 Chapter 1: Parallax Serial LCD Display · Page 39

P1. Example solution:
' Smart Sensors and Applications - Ch1_Project1.bs2
' Display a 6-line message
' {$STAMP BS2}
' {$PBASIC 2.5}

LcdPin PIN 14
T9600 CON 84

PAUSE 250
SEROUT 14, 84, [22, 12] ' Turn on display and clear
PAUSE 5 ' 5 ms delay for clearing display

SEROUT LcdPin, T9600, ["I have never let"]
SEROUT LcdPin, T9600, ["my schooling "]
PAUSE 1500
SEROUT LcdPin, T9600, ["interfere with "]
SEROUT LcdPin, T9600, ["my education. "]
PAUSE 1500
SEROUT LcdPin, T9600, [" -Mark Twain"]
SEROUT LcdPin, T9600, [" 1835-1910 "]

END

P2. All three copies will change into the newly defined character! It's like magic. A

sample program is shown below.
' Smart Sensors and Applications - Ch1_Project2.bs2
' Print 3 copies of custom character, then redefine character.
' {$STAMP BS2} ' Target device = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

Line0 CON 128
Line1 CON 148
copies VAR Nib

PAUSE 250
SEROUT 14, 84, [22, 12] ' Turn on display and clear
PAUSE 5 ' 5 ms delay for clearing
display

SEROUT 14, 84, [248, ' Define Custom Character 0
 %00110, ' * *
 %00101, ' * *
 %00100, ' *
 %11111, ' * * * * *
 %00100, ' *
 %01110, ' * * *
 %10101, ' * * *
 %00100] ' *

Page 40 · Smart Sensors and Applications

FOR copies = 1 TO 3
 SEROUT 14, 84, [0] ' Display Custom Character 0
NEXT

PAUSE 1000 ' Allow time to view
SEROUT 14, 84, [Line1, "now re-defining"]' Display message on Line 1
PAUSE 1000
SEROUT 14, 84, [Line1, " "]' Clear message

SEROUT 14, 84, [248, ' Re-define Custom Character 0
 %00100, ' *
 %10011, ' * * *
 %01001, ' * *
 %00101, ' * *
 %00001, ' *
 %00010, ' *
 %00100, ' *
 %11000] ' * *
END

Chapter 2: The Ping))) Ultrasonic Sensor · Page 41

Chapter 2: The Ping))) Ultrasonic Distance Sensor

The Ping))) sensor interfaced with a BASIC Stamp can measure how far away objects
are. With a range of 3 centimeters to 3.3 meters, it's a shoo-in for any number of robotics
and automation projects. It's also remarkably accurate, easily detecting an object's
distance down to the centimeter.

Figure 2-1
The Ping)))™ Ultrasonic
Distance Sensor

HOW DOES THE PING))) SENSOR WORK?
Figure 2-2 shows how the Ping))) sensor sends a brief chirp with its ultrasonic speaker
and measures the echo's return time to its ultrasonic microphone. The BASIC Stamp
starts by sending the Ping))) sensor a pulse to start the measurement. Then, the Ping)))
sensor waits long enough for the BASIC Stamp program to start a PULSIN command.
Then, at the same time the Ping))) sensor chirps its 40 kHz tone, it sends a high signal to
the BASIC Stamp. When the Ping))) sensor detects the echo with its ultrasonic
microphone, it changes that high signal back to low.

Figure 2-2: How the Ping))) Sensor Works

Page 42 · Smart Sensors and Applications

The BASIC Stamp PULSIN command uses a variable to store how long the high signal
from the Ping))) sensor lasted. This time measurement is how long it took sound to travel
to the object and back. Using this measurement and the speed of sound in air, you can
make your program calculate the object's distance in centimeters, inches, feet, etc.

The Ping))) sensor's chirps are not audible because 40 kHz is ultrasonic.

What we consider sound is our inner ear's ability to detect the variations in air pressure
caused by vibration. The rate of these variations determines the pitch of the tone. Higher
frequency tones result in higher pitch sounds and lower frequency tones result in lower pitch
tones.

Most people can hear tones that range from 20 Hz, which is very low pitch, to 20 kHz, which
is very high pitch. Subsonic is sound with frequencies below 20 Hz, and ultrasonic is sound
with frequencies above 20 kHz. Since the Ping))) sensor's chirps are at 40 kHz, they are
definitely ultrasonic, and not audible to people.

ACTIVITY #1: MEASURING ECHO TIME
In this activity, you will test the Ping))) sensor and verify that it gives you echo time
measurements that correspond to an object's distance.

Parts Required

(1) Ping))) Ultrasonic Distance Sensor
(3) Jumper Wires

All you'll need is a Ping))) sensor and three jumper wires to make it work. The Ping)))
sensor has protection against programming mistakes (and wiring mistakes) built-in, so
there's no need to use a 220 Ω resistor between P15 and the Ping))) sensor's SIG terminal.

Ping))) Sensor Circuit

Figure 2-3 shows a schematic and wiring diagram for testing the Ping))) sensor.

√ Build the circuit.

Chapter 2: The Ping))) Ultrasonic Sensor · Page 43

Figure 2-3: Ping))) Sensor Schematic and Wiring Diagram

Testing the Ping))) Sensor

As mentioned earlier, the Ping))) sensor needs a start pulse from the BASIC Stamp to
start its measurement. A pulse to P15 that lasts 10 µs (PULSOUT 15, 5) is easily
detected by the Ping))) sensor, and it only takes a small amount of time for the BASIC
Stamp to send. A PULSIN command that stores the duration of the Ping))) sensor's echo
pulse (PULSIN 15, 1, time) has to come immediately after the PULSOUT command. In
this example, the result the PULSIN command stores in the variable time is the round trip
time for the Ping))) sensor's chirp to get to the object, reflect, and return.

Example Program - PingTest.bs2

You can test this next program by measuring the distances of a few close-up objects. For
close-up measurements, the Ping))) sensor only needs to be 3 to 4 inches (roughly 8 to
10 cm) above your working surface. However, if you are measuring objects that are
more than a half a meter away, you may need to elevate your Ping))) sensor to prevent
echoes from the floor registering as detected objects.

√ Place your Board of Education with the Ping))) sensor circuit on something to
keep it at least 8 cm above the table surface.

√ Place an object (like a water bottle, box, or paper target) 15 cm from the front of
the Ping))) sensor.

√ Enter, save, and run PingTest.bs2.
√ The Debug Terminal should start reporting a value in the 400 to 500 range.

Page 44 · Smart Sensors and Applications

√ Move the target to a distance of 30 cm from the Ping))) sensor and verify that the
value of the time variable roughly doubled.

√ Point your Ping))) sensor at a variety of near and far objects, and observe the
time measurements.

' Smart Sensors and Applications - PingTest.bs2
' Tests the Ping))) ultrasonic distance sensor

' {$STAMP BS2}
' {$PBASIC 2.5}

time VAR Word

DO
 PULSOUT 15, 5
 PULSIN 15, 1, time

 DEBUG HOME, "time = ", DEC5 time

 PAUSE 100
LOOP

Your Turn - Testing Range, Angle and Object Size

In terms of accuracy and overall usefulness, ultrasonic distance detection is really great,
especially compared to other low-cost distance detection systems. That doesn't mean that
the Ping))) sensor is capable of measuring "everything". Figure 2-4 shows a few
situations that the Ping))) is not designed to measure: (a) distances over 3 meters, (b)
shallow angles, and (c) objects that are too small.

Figure 2-4: The Ping))) Sensor is Not Designed for these Situations:

a. b. c.

Chapter 2: The Ping))) Ultrasonic Sensor · Page 45

In addition, as Ken Gracey of Parallax Inc. discovered during a classroom demonstration
at his son’s school, some objects with soft, irregular surfaces (such as stuffed animals)
will absorb rather than reflect sound and therefore can be difficult for the Ping))) sensor
to detect. Objects with smooth surfaces that readily reflect sound are easier for the sensor
to detect.

√ Try pointing the Ping))) sensor at various objects that are different distances
away. What's the largest value the Ping))) sensor returns? How close do you
have to get to the object before the time measurements start to decrease?

√ Try standing one meter away from the wall, and point the Ping))) sensor at it,
and record the measurement. Next, try pointing the Ping))) sensor at the wall at
different angles, as shown in Figure 2-5. Do the values change? At what angle
does the Ping))) sensor cease to detect the wall?

Figure 2-5
Determining the
Minimum Angle of
Detection

√ Try hanging various objects from the ceiling at about 1.5 meters from the Ping)))

sensor. How small can the object be? Does shape or angle matter? Does the
size requirement change at 0.5 meters?

√ Try detecting objects of similar size but made from different materials, such as a
cardboard shoebox and a fuzzy slipper, to see if you have a smaller effective
range with sound-absorbing objects. Can you find any objects invisible to the
Ping))) sensor? How about a wad of cotton balls, or of tulle netting?

Page 46 · Smart Sensors and Applications

ACTIVITY #2: CENTIMETER MEASUREMENTS
This activity demonstrates how to use the speed of sound and the PBASIC Multiply High
operator (**) to calculate the distance of an object based on the echo time measurement
from the Ping))) sensor.

Calculating Centimeter Distance with PBASIC

The equation for the distance sound travels is S = Cair t, where S is distance, Cair is the
speed of sound in air, and t is time. Since the Ping))) sensor's time measurement is the
time it takes sound to get to the object and bounce back, the actual distance, Sobject, is half
of the total distance the sounds travels.

tCS air=

2
tC

2
SS air

object ==

The speed of sound in air is most commonly documented in terms of meters per second
(m/s). However, centimeter (cm) measurements will be more convenient to calculate
with the BASIC Stamp. Since there are 100 centimeters in a meter, let’s use Sobject-cm
which is simply 100 times Sobject. The PULSIN Duration measurement units for the
BASIC Stamp 2 are 2/1,000,000 of a second (2 µs). So, instead of t, which has to be a
measurement of seconds, we'll use tPULSIN-BS2. When multiplied by 2/1,000,000
tPULSIN-BS2 gives us the number of seconds. There is a pair of 2s in the numerator and
denominator that cancel, and 100 in the numerator can cancel with two of the zeros in the
denominator's 1,000,000. The result of these substitutions and cancellations is
Sobject-cm = (Cair tPULSIN-BS2)/10,000.

2
tC100S air

cmobject- =

1,000,000
2

2
tC100S BS2-PULSINair

-cmobject ×=

10,000
tCS BS2-PULSINair

cmobject- =

Chapter 2: The Ping))) Ultrasonic Sensor · Page 47

The speed of sound in air at room temperature 72 °F (22.2 °C) is 344.8 m/s. Dividing
10,000 into this leaves us with Sobject-cm = 0.03448 tPULSIN-BS2.

10,000
t344.8S BS2-PULSIN

cmobject- =

 BS2-PULSINt0.03448=

The BASIC Stamp can use the ** operator to multiply a variable that stores the PULSIN
command’s Duration measurement by a fractional value that's less than 1. For example,
if the PULSIN command stores the echo measurement in the time variable, this command
will store the centimeter distance result in the cmDistance variable:

cmDistance = CmConstant ** time

With the ** operator, CmConstant will have to be 2260, which is the ** equivalent of
0.03448. Instead of a decimal denominator, like 10,000 (in the case of 0.03448), the **
operator needs a value that would go in the numerator of a fraction with a denominator of
65536. To get that numerator, multiply your fractional value by 65536.

22606553680.0344ttanCmCons =×=

Now, we've got the value we need to modify PingTest.bs2 so that it will measure
centimeter distance. We'll also add a variable to store distance (cmDistance) along with
the constant to store the value 2260 (CmConstant).

CmConstant CON 2260

cmDistance VAR Word

Then, the ** calculation can be added to the PingText.bs2's DO...LOOP to calculate the
centimeter measurement. The DEBUG command in the program can then be modified to
display the measurement.

cmDistance = CmConstant ** time

DEBUG HOME, DEC3 cmDistance, " cm"

Page 48 · Smart Sensors and Applications

Example Program: PingMeasureCm.bs2

√ Enter, save and run PingMeasureCm.bs2.
√ Move the target object until the measurement displays 20 cm.
√ Align your ruler with that measurement. The 0 cm mark should align

somewhere with the Ping))) sensor, typically somewhere between the printed
circuit board and the front-most part of the speaker/microphone.

√ Now, experiment with other distance measurements.

' Smart Sensors and Applications - PingMeasureCm.bs2
' Measure distance with Ping))) sensor and display in centimeters.

' {$STAMP BS2}
' {$PBASIC 2.5}

' Conversion constants for room temperature measurements.
CmConstant CON 2260

cmDistance VAR Word
time VAR Word

DO

 PULSOUT 15, 5
 PULSIN 15, 1, time

 cmDistance = CmConstant ** time

 DEBUG HOME, DEC3 cmDistance, " cm"

 PAUSE 100

LOOP

Your Turn - Verifying the Calculations

Let's verify that that the program is correctly calculating the distance.

√ Modify PingMeasureCm.bs2 so that it displays the values of both the time and
the distance variables.

√ Use a calculator to verify that you get the same result from the distance equation
that you do from the program.

BS2-PULSINcmobject- t0.03448S ×=

Chapter 2: The Ping))) Ultrasonic Sensor · Page 49

ACTIVITY #3: INCH MEASUREMENTS
Most electronic distance measuring devices offer results in either metric or English units.
For example, the calipers shown in Figure 2-6 has a button you can press to choose
between mm and inches. Other measuring devices offer yards or meters, or inches or
centimeters, etc. So that your program can display both centimeters and inches, this
activity introduces uses the multiply-high (**) operator a second time to convert from
centimeters to inches.

Figure 2-6: Calipers with a mm/in Toggle Button

An Inches ** Constant

The CmConstant used in cmDistance = time ** CmConstant is a measure of the
speed of sound in centimeters per PULSOUT time unit. There are 2.54 centimeters in
every inch. So, the conversion formula from centimeter to inch distances can be written
like this:

2.54SS cmin ÷=

The easiest way to convert to inches is to simply divide the value of CmConstant by
2.54, and use the result declared in another constant, like InConstant. Remember that
constants for the ** operator should be integers, so round the result to the nearest integer.

890889.762.542260ttanInCons ≈=÷=

Page 50 · Smart Sensors and Applications

Example Program: PingMeasureCmAndIn.bs2

√ Enter, save, and run PingMeasureCmAndIn.bs2.
√ Experiment with the distance measurements and verify that they are correct in

both systems.

' Smart Sensors and Applications - PingMeasureCmAndIn.bs2
' Measure distance with Ping))) sensor and display in both in & cm

' {$STAMP BS2}
' {$PBASIC 2.5}

' Conversion constants for room temperature measurements.
CmConstant CON 2260
InConstant CON 890

cmDistance VAR Word
inDistance VAR Word
time VAR Word

DO

 PULSOUT 15, 5
 PULSIN 15, 1, time

 cmDistance = cmConstant ** time
 inDistance = inConstant ** time

 DEBUG HOME, DEC3 cmDistance, " cm"
 DEBUG CR, DEC3 inDistance, " in"

 PAUSE 100

LOOP

Your Turn

√ There are 12 inches in 1 foot. Modify the program so that it displays feet and
inches. Hint: After calculating inDistance, use / 12 to figure out the number
of feet, and // 12 to find the remainder in inches.

√ There are 10 centimeters in a decimeter. Repeat for decimeters and centimeters.

Chapter 2: The Ping))) Ultrasonic Sensor · Page 51

ACTIVITY #4: MOBILE MEASUREMENTS
This activity demonstrates displaying the Ping))) sensor's centimeter and inch
measurements on the Parallax Serial LCD. Provided you're using a battery, you can
disconnect from your computer and take the setup to remote locations of your choosing.

Connecting the Ping))) Sensor with an Extension Cable

In order to make room for the Parallax Serial LCD on the Board of Education, we'll
connect the Ping))) sensor to the board with an extension cable. You can then hold it and
point it various places, or use hardware to mount it next to your Board of Education.

Parts Required

(1) Ping))) Ultrasonic Sensor
(1) Parallax Serial LCD (2×16)
(1) 14-inch LCD Extension Cable
(3) Jumper Wires

If you are working from a BASIC Stamp HomeWork Board or a serial Board of
Education Rev A or B, you will also need:

(1) 3-pin header
(3) Additional jumper wires

Ping))) Sensor and LCD Cable Connections

The schematics shown in Figure 2-7 below are identical to the ones that have been used
for the Ping))) sensor and the Parallax Serial LCD up to this point. We will now change
the way these electrical connections are made by adding a cable, so that both devices can
be conveniently connected to your board at the same time. Though the schematics are the
same, the actual cable connections will vary depending on which BASIC Stamp
educational board you are using.

Page 52 · Smart Sensors and Applications

Figure 2-7
Ping))) Sensor and Parallax
Serial LCD Schematic

Board of Education Rev C and USB Board of Education Cable Connections

These instructions are for the boards that have servo ports with a Vdd/Vss jumper in
between, such as the Board of Education Rev C and USB Board of Education. For all
other boards, skip to All other BASIC Stamp Educational Boards on page 54.

√ Disconnect power to your board.
√ Set the jumper between the X4 and X5 servo to Vdd (+5 V) as shown in Figure

2-8. The jumper should cover the two pins closest to Vdd, and the third pin next
to Vin should be visible.

Figure 2-8
The Servo Port Jumper Set to
Vdd (+5 V)

Chapter 2: The Ping))) Ultrasonic Sensor · Page 53

Vdd vs. Vin jumper settings determine which power supply is connected to the X4 and X5
ports. When the jumper is set to Vdd, these ports receive regulated 5 V from the Board of
Education's voltage regulator. If the jumper is set to Vin, the port receives power directly
from the battery or power supply.

√ Connect the Parallax Serial LCD as shown. It's the same as the previous chapter.
√ Plug one end of the extension cable into Port 15 of the X4 header, making sure

that the "Red" and "Black" labels along the right side of the X5 port line up with
the cable's red and black wires.

√ Verify that your cable is plugged in correctly by checking to make sure the white
wire is closest to the 15 label and the black wire is closest to the X4 label.

Figure 2-9
Servo Port and
Power Jumper
Connection for
Ping))) Sensor

Page 54 · Smart Sensors and Applications

√ Connect the other end of the cable so that the black wire is connected to the
Ping))) module's GND pin, the red wire is connected to the 5 V pin, and the
white wire is connected to the RX pin.

√ Double-check all your connections, including your jumper setting, and make
sure they are correct.

WARNING! Do not connect power to your board until you are positive the
connections are correct. If you make a mistake with the LCD connections, the
Parallax Serial LCD could be permanently damaged.

√ Plug the power back into the board.
√ Set the 3-position switch on the Board of Education to 2.
√ If you have a Board of Education Rev C, Skip to LCD Distance Display on

page 57.

You can also connect the Parallax Serial LCD to Port 14 with a cable. The instructions
are about the same as connecting the Ping))). Start by disconnecting power to your board.
The jumper for Vdd and Vin between the servo ports has to be set to Vdd. The cable has to
be plugged into the X4 header so that the black wire is closest to the X4 label and the white
wire is closest to the 14 label. When connecting the other end of the cable to the Parallax
Serial LCD, make sure the black wire connects to GND, the red wire to 5V, and the white
wire to RX.

All other BASIC Stamp Educational Boards

This section is for connecting the Ping))) sensor and Parallax Serial LCD to one of the
following BASIC Stamp educational boards:

• BASIC Stamp HomeWork Board
• Board of Education Rev A (Serial version)
• Board of Education Rev B (Serial version)

√ Disconnect power from your board.
√ Build the breadboard connections as shown in Figure 2-10.

Chapter 2: The Ping))) Ultrasonic Sensor · Page 55

Figure 2-10
Breadboard Wiring for Ping)))
Sensor Cable Connection

√ Plug the Parallax Serial LCD into the breadboard as shown in Figure 2-11 on

page 56.
√ Plug one end of the extension cable into the 3-pin header, making sure the white,

red, and black wires are oriented as shown. The black wire should be connected
to Vss, the Red wire to Vdd, and the white wire to P15.

√ Connect the other end of the cable so that the black wire is connected to the
Ping)))'s GND pin, the red wire is connected to the 5 V pin, and the white wire is
connected to the RX pin. Double-check all your connections, including your
jumper setting, and make sure they are correct.

WARNING! Do not connect power to your board until you are positive the
connections are correct. If you make a mistake with the LCD connections, the
Parallax Serial LCD could be permanently damaged.

√ Reconnect power to your board.

Page 56 · Smart Sensors and Applications

Figure 2-11: Breadboard Connections for Ping))) Sensor and Parallax Serial LCD

Chapter 2: The Ping))) Ultrasonic Sensor · Page 57

LCD Distance Display

It doesn't take much in the way of changes to modify PingMeasureCmAndIn.bs2 to make
it display its measurements on the LCD. First, an Initialization section has to be added so
that the program waits for the power supply to stabilize and then turns on and clears the
LCD.

PAUSE 200
SEROUT 14, 84, [22, 12]
PAUSE 5

Next, the DEBUG commands need to be changed to SEROUT commands. Here are the
DEBUG commands from PingMeasureCmAndIn.bs2.

DEBUG HOME, DEC3 cmDistance, " cm"
DEBUG CR, DEC3 inDistance, " in"

The Debug Terminal control characters (HOME and CR) need to be changed to control
codes that will place the cursor in the LCD.

SEROUT 14, 84, [128, DEC3 cmDistance, " cm"]
SEROUT 14, 84, [148, DEC3 inDistance, " in"]

Example Program: PingLcdCmAndIn.bs2

This program is a modified version of PingMeasureCmAndIn.bs2 from the previous
activity. Instead of displaying its measurements in the Debug Terminal, it displays them
on the Parallax Serial LCD.

√ Connect a battery to your board.
√ Enter, save and run PingLcdCmAndIn.bs2.
√ Disconnect the serial cable, and take your board with you to wherever you want

to test the Ping))) sensor's measurements.

' Smart Sensors and Applications - PingLcdCmAndIn.bs2
' Measure Distance with the Ping))) sensor and display on LCD

' {$STAMP BS2}
' {$PBASIC 2.5}

' Conversion constants for room temperature measurements.
CmConstant CON 2260
InConstant CON 890

cmDistance VAR Word

Page 58 · Smart Sensors and Applications

inDistance VAR Word
time VAR Word

PAUSE 200
SEROUT 14, 84, [22, 12]
PAUSE 5
DEBUG CLS, "Program running..."

DO

 PULSOUT 15, 5
 PULSIN 15, 1, time

 cmDistance = cmConstant ** time
 inDistance = inConstant ** time

 SEROUT 14, 84, [128, DEC3 cmDistance, " cm"]
 SEROUT 14, 84, [148, DEC3 inDistance, " in"]

 PAUSE 100

LOOP

Your Turn - Customizing the Display

√ The measurements are currently left-justified. Try centering them.
√ Try right justifying the measurements and displaying "Distance: " before the cm

measurement on the LCD's top line.
√ Modify the program so that it displays both of the distance measurements on the

top line. Then, display the actual echo time on the bottom line. You can display
it in millionths of a second (µs) by multiplying the time variable by 2 before
displaying it. Make sure your program waits until after it has done its distance
conversions before multiplying time by 2.

ACTIVITY #5: TEMPERATURE'S EFFECT ON THE SPEED OF SOUND
This activity investigates changes in the speed of sound caused by changes in air
temperature. These changes in the speed of sound can result in visible changes to your
distance measurements.

Speed of Sound Vs Temperature and Percent Error Measurements

The speed of sound changes with air temperature, humidity, and even air quality. Neither
humidity nor air quality make enough of a difference to figure into Ping))) sensor

Chapter 2: The Ping))) Ultrasonic Sensor · Page 59

distance calculations. Air temperature, on the other hand, can cause measurable distance
errors. The speed of sound increases by 0.6 meters per second (m/s) for every degree-
Celsius (°C) increase in temperature. Since the speed of sound is about 331.5 m/s at 0
°C, we can use this equation to calculate the speed of sound at a given temperature.

() m/sT0.6331.5C Cair ×+=

Converting from °F to °C and Visa Versa

To convert a degree-Fahrenheit to Celsius, subtract 32 from TF (the Fahrenheit
measurement), then divide by 1.8. The result will be TC, the Celsius equivalent. To convert
from Celsius to Fahrenheit, multiply TC by 1.8, then add 32. The result will be TF.

1.832)-(T T FC ÷= 32T81T CF +×= .

Below are examples for the speed of sound at two fairly comfortable, but slightly
different indoor temperatures.

Example 1: Calculate the speed of sound at 22.2 °C, which is approximately 72 degrees
Fahrenheit (°F).

() () m/s344.8m/s22.20.6331.5C22.2Cair =×+=°

Example 2: Calculate the speed of sound at 25 °C, which is 77 degrees Fahrenheit (°F).

() () m/s346.5m/s250.6331.525°CCair =×+=

How much of a difference does this make to your distance measurements? We can
calculate the percent error this will propagate with the percent error equation.

 100%
predicted

predicted actualerror% ×=
-

If the predicted temperature in the room is 72 °F (22.2 °C), and the actual temperature is
77 °F (25 °C), the error is 0.49 percent. Half a percent error would cause you to have to

Page 60 · Smart Sensors and Applications

move the object half a centimeter beyond 100 cm before it would transition from 99 to
100 cm.

100%
344.8

344.8 346.5error% ×= -

 0.49%=

Your Turn - Room Temperature Vs. Freezing

√ Calculate the percent measurement error that would result from assuming that
the ambient temperature is freezing (32 °F, 0 °C), but it's actually room
temperature (72 °F, 22.2 °C).

√ How far off would the measurement be if the object is 1 m away?
√ Use the procedure introduced in Activity #2 to calculate the speed of sound and

CmConstant for measurements at 0 °C.
√ Save PingMeasureCm.bs2 as PingMeasureCmYourTurn.bs2
√ Run the program before modifying it and test the distance measurement of an

object at 1 m.
√ Modify the cmConstant CON directive with the value for 0 °C.
√ Re-test the program with an object at 1 m. How close is your predicted error to

the actual error?

Chapter 2: The Ping))) Ultrasonic Sensor · Page 61

SUMMARY
The BASIC Stamp requests a measurement from the Ping))) sensor by sending it a brief
pulse, which causes it to emit a 40 kHz chirp. Then, the Ping))) listens for an echo of that
chirp. It reports the echo by sending a pulse back to the BASIC Stamp that is equal to the
time it took for the Ping))) sensor to receive the echo.

To calculate the distance based on the echo time measurement, the speed of sound must
be converted into units that are convenient for the BASIC Stamp. This involves
converting meters per second to centimeters per PULSIN measurement units. The
resulting value also has to be converted to a value that can be used with the multiply high
(**) operator by multiplying it by 65536.

The speed of sound in air is cair = 331.5 + (0.6 × TC) m/s. While the speed of sound
changes with temperature, the resulting measurement errors are small, especially at room
temperature.

Questions

1. What is the Ping))) sensor's range?
2. What does ultrasonic mean?
3. What signal does the Ping))) sensor send the BASIC Stamp and how does it

correspond to a distance measurement?
4. What three sensor-object orientation scenarios could cause the Ping))) sensor to

return an incorrect distance measurement?
5. What time increments does the PULSIN command return when using a BS2?
6. What's the speed of sound in air at room temperature?
7. How does CmConstant relate to the speed of sound in air?
8. What do you have to do to the jumper between the X4 and X5 servo headers on

the Board of Education to provide the correct supply voltage to devices like the
Ping))) sensor and the Parallax Serial LCD? What might happen if this jumper is
not correctly set?

9. What commands have to be modified if you want to make the Parallax LCD
display what the Debug Terminal was displaying?

10. What role does air temperature play in the speed of sound in air?

Page 62 · Smart Sensors and Applications

Exercises

1. Calculate how many meters away an object is if the echo time is 15 ms, and the
temperature is 22.5 °C.

2. Calculate the °C equivalent of 100 °F.
3. Calculate the foot equivalent of 30.48 cm.
4. Calculate the percent error if CmConstant is for 37.8 °C but the temperature is

0 °C. Predict what the measured distance would be if the object were placed at
0.5 m.

Projects

1. Add an LED circuit to your board and program the BASIC Stamp to make the
LED flash when there is no object in range.

2. Use a piezospeaker to make an alarm that signals when people pass through a
doorway. The Ping))) sensor should be mounted next to the doorway, pointing
across the path people walk when they enter or leave.

Chapter 2: Tilt with the Memsic Accelerometer · Page 63

Solutions

Q1. 3 centimeters to 3.3 meters.
Q2. Sound with frequencies above 20 kHz.
Q3. A high pulse, whose duration corresponds to the time it took for the chirp sound

to travel to the object and back.
Q4. a) Distance over 3 meters, b) Shallow angles, c) Objects that are too small.
Q5. 2µs increments.
Q6. 344.8 m/s.
Q7. CmConstant is the ** equivalent of the speed of sound in air divided by 10000,

or 0.03448.
Q8. The jumper should be set to the Vdd position, otherwise the LCD could be

damaged.
Q9. All DEBUG commands have to be modified, and control characters have to be

modified to use the LCD’s control codes.
Q10. A very important role, with the speed increasing 0.6 m/s for every degree C

increase in air temperature.
E1. The object is 2.59 m away.
E2. 100 °F = 37.7 °C
E3. 30.48 cm = 1.0 ft.
E4. % error = +/- 6.84%; measured distance = 0.466 m.
P1. This example solution places an active-high LED on P13.

' Smart Sensors and Applications - Ch2_Project1.bs2
' Indicate out-of-range with flashing LED. Adjust MaxDistance to suit.
' {$STAMP BS2}
' {$PBASIC 2.5}

LED PIN 13 ' Red LED active high
LCD PIN 14 ' Parallax Serial LCD
Ping PIN 15 ' Parallax Ping))) sensor

CmConstant CON 2260 ' Calc roundtrip time of sound
InConstant CON 890
MaxDistance CON 361 ' Maximum can measure (empirical)
cmDistance VAR Word ' Distance in centimeters
time VAR Word ' Round trip echo time

PAUSE 200 ' Initialize LCD
SEROUT LCD, 84, [22, 12]
PAUSE 5

DO
 LOW LED ' LED off before each measurement
 PULSOUT 15, 5 ' Start Ping)))

Page 64 · Smart Sensors and Applications

 PULSIN 15, 1, time ' Read echo time
 cmDistance = cmConstant ** time ' Calculate distance from time
 SEROUT LCD, 84, [128, DEC3 cmDistance, " cm"] ' Print distance on
 ' LCD scrn
 IF cmDistance >= MaxDistance THEN HIGH LED ' Toggle LED if out
 ' of range
 PAUSE 100
LOOP

P2. Example solution:
' Smart Sensors and Applications - Ch2_Project2.bs2
' Make a sound when someone passes through the doorway.

' {$STAMP BS2}
' {$PBASIC 2.5}
' -----[I/O Definitions]---
Ping PIN 15 ' Parallax Ping))) sensor
Speaker PIN 9 ' Optional speaker

' -----[Constants]---
InConstant CON 890
Doorjamb CON 35 ' Doorway width is 35 inches

' -----[Variables]---
inDistance VAR Word
time VAR Word ' Round trip echo time
counter VAR Nib

' -----[Main Routine]--
DO
 GOSUB Read_Ping
 GOSUB Calc_Distance
 IF (inDistance < Doorjamb) THEN
 GOSUB Sound_Alarm
 ENDIF
LOOP
' -----[Subroutines] --
Read_Ping:
 PULSOUT 15, 5 ' Start Ping)))
 PULSIN 15, 1, time ' Read echo time
 RETURN

Sound_Alarm:
 FREQOUT Speaker, 300, 3300 ' Bing
 PAUSE 50
 FREQOUT Speaker, 450, 2200 ' Bong
 RETURN

Calc_Distance:
 inDistance = inConstant ** time ' These are the whole measurements
 RETURN

Chapter 3: Tilt with the Memsic Accelerometer · Page 65

Chapter 3: The Memsic Dual-Axis Accelerometer

Acceleration is a measure of how quickly speed changes. Just as a speedometer is a
meter that measures speed, an accelerometer is a meter that measures acceleration. You
can use an accelerometer's ability to sense acceleration to take a variety of measurements
that can be very useful to electronic and robotic projects and designs. Here are some
examples:

• Acceleration
• Tilt and tilt angle
• Incline
• Rotation
• Vibration
• Collision
• Gravity

Accelerometers are already used in many different devices, including personal
electronics, specialized equipment and machines. Here are just a few examples:

• Self-balancing robots
• Tilt-mode game controllers
• Model airplane autopilots
• Car alarm systems
• Crash detection/airbag deployment systems
• Human motion monitoring systems
• Leveling tools

Once upon a time, accelerometers were large, clunky and expensive instruments that did
not lend themselves to electronic and robotic projects. This all changed thanks to the
advent of MEMS, micro-electro-mechanical-systems. MEMS technology is responsible
for an ever-increasing number of formerly mechanical devices being designed right onto
silicon chips.

Page 66 · Smart Sensors and Applications

The accelerometer you will be working with in this text is the Parallax Memsic 2125
Dual Axis Accelerometer module shown in Figure 3-1. This module measures less than
1/2” × 1/2” × 1/2”, and the accelerometer chip itself is less than 1/4” × 1/4” × 1/8”.

Figure 3-1: Accelerometer Module and MX2125 Chip

 Accelerometer Module MX2125 Chip

People naturally sense acceleration on three axes: forward/backward, left/right and
up/down. Just think about the last time you were in the passenger seat of a car on a hilly
and curvy road. Forward/backward acceleration is the sensation of speeding up and
slowing down. Left/right acceleration makes you lean when making turns, and up down
acceleration is what you felt going over hills.

Instead of the three axes people sense, the MX2125 accelerometer senses acceleration on
two axes. The acceleration it senses depends on how it’s positioned. By holding it one
way, it can sense forward/backward and left/right. If you hold it a different way, it can
sense up/down and forward/backward. Two axes of acceleration is enough for many of
the applications listed earlier. While you can always mount and monitor a second
accelerometer to capture that third axis, three-axis accelerometers are also common.

For a 3-axis accelerometer, try our Hitachi H48C Tri-Axis Accelerometer Module,
Parallax part #28026.

Chapter 3: Tilt with the Memsic Accelerometer · Page 67

THE MX2125 ACCELEROMETER – HOW IT WORKS
The MX2125’s design is amazingly simple. It has a chamber of gas with a heating
element in the center and four temperature sensors around its edge. Just as hot air rises
and cooler air sinks, the same applies to hot and cool gasses. If you hold the
accelerometer still, all it senses is gravity, and tilting it gives us an example of how it
senses static acceleration. When you hold the accelerometer level, the hot gas pocket
rises to the top-center of the accelerometer’s chamber, and all the sensors will measure
the same temperature. Depending on how you tilt the accelerometer, the hot gas will
collect closer to one or maybe two of the temperature sensors.

Figure 3-2: The Accelerometer’s Heated Gas Pocket

By comparing the sensor temperatures, both static acceleration (gravity and tilt) and
dynamic acceleration (like taking a ride in a car) can be detected. If you were to take the
accelerometer for a car ride, the hotter and cooler gasses would slosh around in the
chamber in a manner similar to a container half-full of water, and the sensors would
detect this.

In most situations, making sense out of these measurements is a simple task thanks to the
electronics inside the MX2125. The MX2125 converts the temperature measurements
into signals (pulse durations) that are easy for the BASIC Stamp microcontroller to
measure and decipher.

Page 68 · Smart Sensors and Applications

ACTIVITY #1: CONNECTING AND TILT-TESTING THE MX2125
In this activity, you will connect the accelerometer module to the BASIC Stamp, run a
test program, and verify that it can be used to sense tilt.

Parts Required

 (2) 3-inch Jumper Wires
 (2) Resistors – 220 Ω
 (1) Memsic MX2125 Dual-Axis Accelerometer

Accelerometer Electrical and Signal Connections

Figure 3-3 shows how to connect the accelerometer module to the Board of Education's
power supply, along with the BASIC Stamp I/O pin connections you will need to make to
run the example program.

√ Connect the accelerometer module using Figure 3-3 as your guide.

Figure 3-3: Accelerometer Schematic and Wiring Diagram

Listening to the Accelerometer's Signals with the BASIC Stamp

The two axes the MX2125 uses to sense gravity and acceleration are labeled x and y in
Figure 3-4. It will help if you set your board flat on the table in front of you as shown in
the figure. That way, the x and y axes point the same directions they do on most xy plots.

Chapter 3: Tilt with the Memsic Accelerometer · Page 69

Figure 3-4: Accelerometer Axis Pulse Measurements

For room temperature testing, you can get a pretty good indication of tilt by just
measuring the high times of the pulses sent by the MX2125’s Xout and Yout pins with
the PULSIN command. Depending on how far you tilt the board and in which direction,
the PULSIN time measurements should range from 1875 to 3125. When the board is
level, the PULSIN command should store values in the neighborhood of 2500.

Page 70 · Smart Sensors and Applications

√ Make sure your board is sitting flat on the table, oriented with its x and y axes as
shown in Figure 3-4.

√ Enter and run SimpleTilt.bs2.

' Smart Sensors and Applications - SimpleTilt.bs2
' Measure room temperature tilt.

'{$STAMP BS2}
'{$PBASIC 2.5}

x VAR Word
y VAR Word

DEBUG CLS

DO

 PULSIN 6, 1, x
 PULSIN 7, 1, y

 DEBUG HOME, DEC4 ? X, DEC4 ? Y

 PAUSE 100

LOOP

√ Check to make sure the Debug Terminal reports that the x and y variables are

both storing values around of 2500 as shown in Figure 3-5.

Figure 3-5
Debug Terminal
Output

Chapter 3: Tilt with the Memsic Accelerometer · Page 71

√ Grab the edge of the board with the Y-Axis label and gradually lift it toward you.
The y value should increase as you increase the tilt.

√ Keep tilting the board toward you until it's straight up and down. The Debug
Terminal should report that the y variable stores a value near 3125.

√ Lay the board flat again.
√ Next, instead of tilting the board toward you, gradually tilt it away from you.

The y value should drop below 2500 and gradually decrease to 1875 as you tilt
the board until it’s straight up and down.

√ Lay the board flat again.
√ Repeat this test with the x-axis. As you tilt the board up with your right hand,

the x value should increase and reach a value near 3125 when the board is
vertical. As you tilt the board upward with your left hand, the x value should
approach 1875.

√ Finally, hold your board in front of you, straight up and down like a steering
wheel.

√ As you slowly rotate your board, the x and y values should change. These
values will be used in another activity to determine the rotation angle in degrees.

ACTIVITY #2: MOBILE MEASUREMENTS
This activity will display the Memsic Accelerometer's measurements on the Parallax
Serial LCD. Provided you're using a battery, after programming you can disconnect from
your computer and take the setup to remote locations of your choosing.

Connecting Both Modules to the BASIC Stamp

Both the Memsic Accelerometer and the Serial LCD can fit on your board at the same
time, so there will be no need for extension cables unless you chose to mount the Parallax
Serial LCD near the Board of Education or in a project box.

Parts Required

(1) Memsic 2125 Accelerometer
(1) Parallax Serial LCD (2×16)
(5) Jumper Wires
(2) Resistors 220 Ω

Page 72 · Smart Sensors and Applications

Building the Accelerometer and LCD Circuits

The schematics shown in Figure 3-6 are identical to the ones that have been used for the
Memsic accelerometer and Parallax Serial LCD in previous activities.

Figure 3-6
Ping))) Sensor and
Parallax Serial LCD
Schematics

The wiring diagrams for the Memsic Accelerometer and Parallax Serial LCD shown in
Figure 3-7 and Figure 3-8 are a combination of the two earlier wiring diagrams for the
individual modules.

√ Build the wiring diagram shown in Figure 3-7 first.

Chapter 3: Tilt with the Memsic Accelerometer · Page 73

Figure 3-7
Debug Terminal
Output

√ Then insert the Parallax Serial LCD as shown Figure 3-8.

Figure 3-8: Debug Terminal Output

LCD Tilt Display

Modifying any of the accelerometer example programs from this chapter to make them
display measurements on the LCD is typically a 2-step process. First comes adding the
LCD initialization routine, and next comes replacing DEBUG commands with SEROUT
commands that will display the information on the LCD.

Page 74 · Smart Sensors and Applications

Always remember to add this initialization, either before the Main Routine, or in small
programs, before the first DO keyword. That will keep the initialization from being
repeated over and over again in the DO...LOOP with the rest of the program. Make sure to
keep it out of the main DO...LOOP because it could cause the display to flicker.

' Initialize LCD
PAUSE 200
SEROUT 14, 84, [22, 12]
PAUSE 5

Next, the DEBUG commands need to be changed to SEROUT commands. Here is the
DEBUG command from SimpleTilt.bs2.

 DEBUG HOME, DEC4 ? X, DEC4 ? Y

The HOME control should be replaced with 128, which is the LCD's home character. The
? directive displays the variable name, and then a carriage return (CR) character
afterwards. Remember from Chapter 1 that CR is the one control character that happens
to be the same for both the Debug Terminal and the Parallax Serial LCD? Because of
this, we can leave the ? directive in the SEROUT commands to the LCD. Here is a SEROUT
command that does the equivalent display on the Parallax Serial LCD.

 SEROUT 14, 84, [128, DEC4 ? X, DEC4 ? Y]

Example Program: SimpleTiltLcd.bs2

This program is a modified version of SimpleTilt.bs2 from the previous activity. Instead
of displaying its measurements in the Debug Terminal, it displays them in the Parallax
Serial LCD.

√ Connect a battery to your board.
√ Enter, save and run SimpleTiltLcd.bs2.
√ Disconnect the serial cable, and take your board with you to wherever you want

to test the Memsic Accelerometer's measurements.

' Smart Sensors and Applications - SimpleTiltLcd.bs2
' Measure room temperature tilt and display them on the Parallax Serial LCD.

'{$STAMP BS2}
'{$PBASIC 2.5}

x VAR Word
y VAR Word

Chapter 3: Tilt with the Memsic Accelerometer · Page 75

' DEBUG CLS

' Initialize LCD
PAUSE 200
SEROUT 14, 84, [22, 12]
PAUSE 5

DO

 PULSIN 6, 1, x
 PULSIN 7, 1, y

' DEBUG HOME, DEC4 ? X, DEC4 ? Y
 SEROUT 14, 84, [128, DEC4 ? X, DEC4 ? Y]

 PAUSE 100

LOOP

Your Turn - Customizing the Display

The carriage return (CR) that's built into the ? operator makes it more difficult to display
information after the x or y variable values. You can rewrite the DEBUG and SEROUT
commands to perform the same operations like this.

 DEBUG HOME, "x = ", DEC4 x, CR, "y = ", DEC4 y

This SEROUT command displays the same information on the Parallax Serial LCD.
Notice how the control code 128 places the cursor on Line 0, character 0. Instead of a CR
control character, 148 places the LCD's cursor on Line 1, character 0.

 SEROUT 14, 84, [128, "x = ", DEC4 x, 148, "y = ", DEC4 y]

With this modified SEROUT command, it's easier to display characters after each value.
For example, here is a SEROUT command that multiplies each measurement by 2 and
displays "us" afterwards.

 SEROUT 14, 84, [128, "x = ", DEC4 (2 * x), " us",
 148, "y = ", DEC4 (2 I y), " us"]

While "us" isn't really the same as "µs" because we are using u instead of the Greek
character mu, most people take its meaning. You can also make a custom character for
mu. This will involve adding a SEROUT command to the beginning of the program that
defines a custom character. Then, you will have to display that custom character where
"u" is currently displayed.

Page 76 · Smart Sensors and Applications

ACTIVITY #3: SCALING DOWN AND OFFSETTING INPUT VALUES
When working with the MX2125 and BASIC Stamp 2, tilt measurements range between
1875 and 3125. This range may have to be scaled and offset any number of ways. For
example, Activity #4 scales this to a range of −100 to 100. Activity #5 scales it to −127
and 127.

Introducing an offset into a range of values is easy, and typically involves an addition or
subtraction operation. Scaling can be a little trickier, especially with a processor like the
BASIC Stamp, which does all its calculations with integer math. This activity introduces
the simplest and most accurate way to scale a larger range of values into a smaller range
with a PBASIC program. The technique introduced here helps prevent errors from
creeping into your sensor measurements with each successive PBASIC calculation, and it
will be used and re-used in many of this book's activities.

Scale and Offset Example

In this first example, we'll take an input value that could be anywhere between 1875 and
3125, and scale and offset it to a corresponding output value that falls in a range from
−127 to 127. Figure 3-9 shows how this should work. The position of the value in the
output scale should be proportional to the position of the value in the input scale. For
example, if the input value is 2500, which is halfway between 1875 and 3125, we should
expect the output value to be 0, which is half way between −127 and 127.

Figure 3-9: Example Input and Output Scales

To apply scale and offset in PBASIC, remember these three steps:

1) Apply offset to align the input scale to zero.
2) Apply the scale.
3) Apply any additional offset that is needed for our output scale.

Chapter 3: Tilt with the Memsic Accelerometer · Page 77

Figure 3-10 shows how to apply these steps with a single PBASIC command that
performs both scaling and offset. Keep in mind that PBASIC calculations work from left
to right unless they are overridden with parentheses. So the first thing this calculation
does is subtract 1875 from the input value. The new range is now 0 to 1200 instead of
1875 to 3215. Next, ** 13369 scales value down to 0 to 254. After the range has been
scaled, 127 is subtracted from it resulting in −127 to 127.

 (1875 to 3125)→(0 to 1200)
 |
 | (0 to 1200)→(0 to 254)
 | |
 | | (0 to 254)→(-127 to 127)
 | | |
 value = value - 1875 ** 13369 - 127

Figure 3-10: Scaling the Value Variable

Choosing the Right ** Constant for Scaling

The value 13369 used with the ** constant to scale (0 to 1250) to (0 to 254) was
determined by substituting the number of elements in the input and output scales into this
equation. The number of output scale elements is 255, including 0, and the number of
input scale elements is 1251, also including 0. Use this equation whenever you need to
fit a larger scale into a smaller one with the ** operator.

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
1elementsscaleinput

elementsscaleoutput65536IntttanScaleCons

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−

=
11251

25565536IntttanScaleCons

[]34436913IntttanScaleCons .,=

13369ttanScaleCons =

Page 78 · Smart Sensors and Applications

Always round your ScaleConstant result down, even if the result is already an
integer! Otherwise, the largest value in your input scale might be one value outside the
output scale's range.

Clamping the Input Range

The best way to make sure the output values do not exceed the output range is to make
sure the input values do not go outside the input range. For example, if you do not want
the output of this command to go outside −127 to 127, the most convenient approach is to
make sure that the input values do not go below 1875 or above 3125. Here is a modified
version of value = value - 1875 ** 13369 - 127 that prevents the problem.

value = (value MIN 1875 MAX 3125) - 1875 ** 13369 - 127

Before subtracting 1875 from the value variable, this command uses two operators,
MIN 1875 and MAX 3125, to make sure value stores something in this range. If the
value variable is storing a number in this range, the MIN and MAX operators leave it alone.
However, if it's storing something less than 1875, MIN 1875 will change value to 1875.
Likewise, if it's storing something above 3125, MAX 3125 changes it to 3125.

Example Program: TestScaleOffset.bs2

Figure 3-11 shows what the Debug Terminal looks like as the next example program is
tested. When you enter input values (separated by commas) into the Debug Terminal's
Transmit windowpane, the program displays the scaled and offset equivalent in the
Debug Terminal's Receive windowpane.

√ Enter, save, and run TestScaleOffset.bs2.

' Smart Sensors and Applications - TestScaleOffset.bs2
' Test scaling from an input range of 1875 to 3125 to an output
' range of -127 to + 127.

'{$STAMP BS2}
'{$PBASIC 2.5}

value VAR Word

DEBUG CLS, "Enter values (1875 to 3125)...", CR

DO

 DEBUG ">"

Chapter 3: Tilt with the Memsic Accelerometer · Page 79

 DEBUGIN DEC value

 value = (value MIN 1875 MAX 3125) - 1875 ** 13369 - 127

 DEBUG "scaled to ", SDEC value, CR

LOOP

Figure 3-11: Scaling Test

Transmit
Windowpane

Receive
Windowpane

√ Click in the Debug Terminal's Transmit windowpane and enter this sequence,
including commas: 1875, 1876, 1879, 1880, 1881, 2496, 2497, 2498, 2499,
2500, 2501, 2502, 2503, 2504, 3119, 3120, 3121, 3124, 3125.

Page 80 · Smart Sensors and Applications

√ Test various other values that range from 1875 to 3125, and verify with a
calculator that the output value’s position in the output range is proportional to
the input value’s position in the input range.

Your Turn - PBASIC and Negative Numbers

The last example program used the DEBUG SDEC modifier to display the value variable
as a signed number. Remember that in PBASIC a word-sized variable can hold an
unsigned value in the range from 0 to 65535 or a signed value from −32768 to +32767.
That’s because it uses the two’s complement method for signed numbers. In this system,
all positive numbers, in binary, begin with a 0 and all negative numbers, in binary, begin
with a 1. Using two’s complement, the values 0 to 32767 are represented by their normal
16-bit binary equivalents, but −1 to −32768 are not. Instead, those negative numbers are
represented by the binary equivalents of 32768 to 65535.

Table 3-1: Two’s Complement Signed Decimal
and Binary Numbers

Unsigned
Decimal

16-Bit Binary
Bit 15 Bit 0

Signed
Decimal

1 0000000000000001 1

32767 0111111111111111 32767

32768 1000000000000000 -32768

65535 1111111111111111 -1

Picture a number line, as in Figure 3-12 . From 0 forward, the values 0 to 32767 are
represented by their normal 16-bit binary equivalents: the value 1 is represented by
binary 1, and so on, up to 32767. But −1 is represented by the binary equivalent of
65535, the largest word-sized value, which is all 1’s. Going backwards along the negative
values, the representative binary numbers get smaller until −32768 is represented by
binary 32768.

Chapter 3: Tilt with the Memsic Accelerometer · Page 81

Figure 3-12: Two’s Complement Signed Decimal Number Line

 (DEC 32767)0111111111111111
 |
 (DEC 1)0000000000000001 |
 | |
-32768...............-1...0...1...............32767
 | |
 | 1111111111111111(DEC 65535)
 |
 1000000000000000 (DEC 32768)

The pattern emerges when you can see an unsigned decimal number compared next to its
signed decimal and binary equivalents.

√ Try running SignedNumbers.bs2 with different values for x until the pattern
becomes clear to you. Try these x values: 0, 1, 2, -1, -2.

√ Then try 65535, 65534, 32767, 32768, and 32769. Do you see how it works?

' Smart Sensors and Applications - SignedNumbers.bs2
' {$STAMP BS2}
' {$PBASIC 2.5}

x VAR Word
x = 32768 '<<< Enter new values for x here, and re-run the program

DEBUG "you entered decimal: ", DEC x, CR
DEBUG "signed decimal: ", SDEC x, CR
DEBUG "16-bit binary: ", BIN16 x, CR

In PBASIC, only word variables can hold signed numbers, so all signed numbers have 16
bits. By looking at the leftmost bit, Bit 15, we can know whether a signed number is
negative or positive. You can use value.BIT15 as a variable that tells you whether
value is a positive or negative number. If value.BIT15 is equal to 0, the number is
positive. If it is equal to 1, the number is negative.

This is an important hint, because some PBASIC operators only work with positive
integers, such division "/" and modulus "//". When using these operators, it is handy to
save the sign of a number, perform the operation with its absolute value, then reapply the
sign afterwards. In fact, we will be doing that later in Chapter 4.

Page 82 · Smart Sensors and Applications

Your Turn - A Closer Look at the ScaleConstant and ** Operator

For small input and output ranges, we can examine them with a calculator, pencil and
paper. Let's take 0 to 10 as our input scale, and 0 to 2 as our output scale. The first step
is to figure out what the constant for the ** operation should be, by using the
scale constant equation.

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
1elementsscaleinput

elementsscaleoutput65536IntttanScaleCons

There are three elements in the output scale, 0, 1, and 2. There are 11 elements in the
input scale, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. Remembering to round down to the nearest
integer, the result is 19660 which is the constant to use with the ** operator.

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−

=
111

365536IntttanScaleCons

[]866019IntttanScaleCons .,=

19660ttanScaleCons =

The term value = value ** 19660 multiplies the value variable by:

299990valuevalue2999906553619660 .. ×=→≈÷

Table 3-2 shows some examples of the BASIC Stamp calculations for each of the values
in the input range for value = value ** 19660. Keep in mind that it's about the same
as multiplying value by 0.29999 with a calculator. Since the BASIC Stamp is an integer
math processor, it truncates any result to an integer value, effectively rounding down.
Notice how the first four input values result in outputs of zero. Then, when the input
value is 4, the result is 1.19996, which gets rounded to 1. As you perform the rest of the
calculations in the table, notice how the output scale of 2 receives four input elements. If
-1 was not used in the denominator, it would only receive one input element.

√ Finish the calculations in Table 3-2 for input values from 5 to 10.

Chapter 3: Tilt with the Memsic Accelerometer · Page 83

Table 3-2: Measured voltages during charge cycle

Value **Scale Constant Calculates Value BASIC Stamp
Integer Result

0 x 0.2999 = 0 0
1 x 0.2999 = 0.2999 0
2 x 0.2999 = 0.5998 0
3 x 0.2999 = 0.8997 0
4 x 0.2999 = 1.1996 1
5 x 0.2999 =
6 x 0.2999 =
7 x 0.2999 =
8 x 0.2999 =
9 x 0.2999 =

10 x 0.2999 =

√ Save TestScaleOffset.bs2 as TestScaleOffsetYourTurn.bs2.
√ Modify the program so that you can test Table 3-2 with the BASIC Stamp and

Debug Terminal.
√ Compare the Debug Terminal results to your table.

ACTIVITY #4: SCALING TO 1/100 G
The standard measure of gravity on the earth's surface is abbreviated "g." This activity
demonstrates how to use the techniques introduced in the previous activity to display the
number of hundredths of a g acting on the accelerometer's x and y axes.

From PULSIN to 1/100 g

The goal here is to modify the example program from Activity #1 so that it displays the
x- and y-axis measurements in terms of 1/100 g instead of 2 µs units. It's another scaling
and offset problem, but this time, we want to fit the 1875 to 3125 input scale into an
output scale of −100 to 100 as shown in Figure 3-13.

Page 84 · Smart Sensors and Applications

Figure 3-13: Scaling and Offset for 1/100 g.

Your Turn - Developing the Program

The goal here is to use the scaling techniques from Activity #3 to modify the program
from Activity #1 so that it displays the x and y-axis measurements in terms of 1/100 g.
Figure 3-14 shows the approximate readings you should expect after your modifications.

Figure 3-14: Sample Readings at Various Orientations (start at top left, rotate clockwise)

a. 1000y100100x == b. 100010y1000x ==

d. 100100y1000x −== c. 1000y100100x =−=

Chapter 3: Tilt with the Memsic Accelerometer · Page 85

√ Open SimpleTilt.bs2 from Activity #1 and save it as CentigravityTilt.bs2
√ Follow the steps for scaling from Activity #3 and determine the ** operation

scale constants.
√ Add lines of code to the program that scale the x and y values down to g/100.
√ Modify the display so that it shows in the Debug Terminal.
√ Test according to Figure 3-14 and troubleshoot if necessary.

ACTIVITY #5: MEASURING 360° VERTICAL ROTATION
The MX2125 has a built-in feature that allows you to use both the x and y axis tilt
measurements to calculate the accelerometer's angle of rotation in the vertical plane, as
shown in Figure 3-15. There are lots of applications where vertical tilt is useful,
including virtual steering wheels for video games and counting bicycle wheel revolutions.
This activity demonstrates how to calculate tilt on the vertical plane with the PBASIC
ATN operator.

Figure 3-15
Tilt on the Vertical Plane

Calculating Arctangent with PBASIC

The tangent of an angle theta (θ) in a right triangle is the ratio of the opposite side of a
right triangle (y) divided by the adjacent side (x). If you know the values of x and y, you
can use the inverse tangent or arctangent to figure out the angle θ. The most common
notations for arctangent are tan−1 and arctan.

Page 86 · Smart Sensors and Applications

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛=

=

−

x
ytanθ

x
yθtan

1

Figure 3-16
Tangent and Arctangent

The arctangent function can be used to determine the accelerometer's rotation angle with
its x and y measurements. PBASIC has an operator called ATN you can use for
calculating tan−1(y/x). To calculate the arctangent of y/x and store it in a variable named
angle, use the command angle = x ATN y.

yatnxangle
x
ytanθ 1 =→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛= −

Figure 3-17 is from the BASIC Stamp Editor's Help file, and it shows how the ATN
operator works. Both the x and y variables have to be scaled to values between −127 and
127. The result of the ATN operator is the angle in binary radians, which is abbreviated to
“brads”. With brads, a circle is split up into 256 segments in the same way that degrees
split a circle into 360 segments.

Figure 3-17
Unit Circle in Degrees and
Binary Radians

Chapter 3: Tilt with the Memsic Accelerometer · Page 87

Converting from Brads to Degrees with */

In the previous activity, we used the ** operator to scale values down from a larger range
to a smaller range. Converting from brads to degrees involves scaling a smaller scale of
0 to 255 to a larger scale of 0 to 359. The PBASIC */ operator is designed for this job.

When you use a command like value = ScaleConstant */ value, the
ScaleConstant term is the number of 256ths you want to multiply the value variable
by. For example, let's say you want to multiply value by 2.5. Multiply 2.5 by 256 and
the result is 640. Now, if value starts as 10, the result of value = 640 */ value will
be 25. If we want value to equal 2.5 times value:

64025652ttanScaleCons =×= .

value = 640 */value 'multiply by 2.5

Remember

The ** operator multiplies by a number of 65536ths.

The */ operator multiplies by a number of 256ths.

The rules of integer math for scaling from one scale to another still apply, even though
we are converting from a smaller scale to a larger one. The only thing that will change is
the scale constant, which is a numerator of 256 for */, instead of 65536 for **.

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
1elementsscaleinput

elementsscaleoutput256IntttanScaleCons/*

The input scale is 0 to 255, which has 256 elements, and the output is 0 to 359, which has
360 elements. The result after substituting these values into the */ scale constant
equation is 361.

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
−

=
1256

360256IntttanScaleCons/*

[]412361IntttanScaleCons/* .=

361ttanScaleCons*/ =

Page 88 · Smart Sensors and Applications

This demonstrates that if the angle variable stores a measure of brads, and you want to
store a measure of degrees instead, use this command:

angle = 361 */ angle

Most documents recommend angle = 360 */ angle. However, using a */ scale constant of
361 is slightly more accurate over the input/output ranges. Try comparing the results of this
operation made with a BASIC Stamp to those made with a spreadsheet.

 angledegrees = (360/256) × anglebrads

Round the result of angledegrees to the nearest integer. If the result has a fractional
component of 0.5 or higher, round up. Otherwise, round down. Then compare it to the 256
possible Debug Terminal outputs with 360 */ angle, then repeat with 361 */ angle. A
spreadsheet is useful for this comparison. If you try it, you'll se that the rate of integer value
matches is much higher with 361 */ angle.

Example Program: TestAtn.bs2

This example program calculates angles based on the y and x values you enter into the
Debug Terminal's Transmit windowpane.

Figure 3-18
Tangent and Arctangent

Chapter 3: Tilt with the Memsic Accelerometer · Page 89

To calculate x and y values to enter into the Debug Terminal, use these equations:

cosθhx

θsinhy

=

=

Figure 3-19
Tangent and Arctangent

For example, let's say that h = 127 and θ = 45°, then the x and y values to be entered into
the Debug Terminal are both 90. If h = 100 and θ = 315°, the y value to enter into the
Debug Terminal will be −71, and the x value will be 71. If h = 100 and θ = 180°, y will
be 0 and x will be −127.

90
989

45 cos127x
90

989
45sin127y

45θand127hFor

≈
=

°=
≈
=

°=
°==

.

.

71
315 cos100x

71
315 sin100y

315θ100hFor

=
°=

−=
°=

°== and

127
180 cos127x

0
180 sin127y

180θand127hFor

−=
°=

=
°=

°==

√ Enter, save, and run TestAtn.bs2
√ Click the Debug Terminal's Transmit windowpane. When prompted for the x

value, type 90 and press the carriage return. When prompted for y, type 90 and
the carriage return again.

√ Verify that the result is 32 brads = 45°.
√ Repeat for the other x and y values just discussed.
√ Use your calculator to determine the x and y values that correspond with various

h and θ values. Compare your calculated results to the Debug Terminal's results.

Page 90 · Smart Sensors and Applications

Some values will be lower than you predict. For example, when h = 100 and θ = 30°,
y = 50 and x = 87. The Debug Terminal will display 21 for the brad angle, which is correct,
but 29 for the degree angle is not correct. It should be 30. This happens occasionally when
scaling from a smaller range to a larger range. The 21 brads measurement corresponds to
29° and 22 brads corresponds to 31°.

' Smart Sensors and Applications - TestAtn.bs2
' Test BASIC Stamp arctangent calculations.

'{$STAMP BS2}
'{$PBASIC 2.5}

angle VAR Word
x VAR Word
y VAR Word

DO

 DEBUG "Enter y: "
 DEBUGIN SDEC y
 DEBUG "Enter x: "
 DEBUGIN SDEC x

 angle = x ATN y

 DEBUG "brad ", SDEC ? angle

 angle = angle */ 361

 DEBUG "degree ", SDEC ? angle, CR

LOOP

Your Turn - Testing Brad to Degree Conversion

As mentioned earlier, the ideal integer result comes from calculating angledegrees =
(360/256) x anglebrands and then rounding up if the value to the right of the decimal point
is 5 to 9 or down if it is 1 to 4. You can generate a list of all 256 brad to degree
conversions with this program.

' Smart Sensors and Applications - BradsToDegrees.bs2
' Display brad to degree conversions for */ 360 and */ 361.

'{$STAMP BS2}
'{$PBASIC 2.5}

Chapter 3: Tilt with the Memsic Accelerometer · Page 91

angle VAR Word
brads VAR Word

DEBUG CLS, "brads */ 360 */ 361", CR

FOR brads = 0 TO 255

 DEBUG DEC3 brads

 angle = brads */ 360
 DEBUG " ", DEC3 angle

 angle = brads */ 361
 DEBUG " ", DEC3 angle, CR

NEXT

END

√ Enter, save and run BradsToDegrees.bs2.
√ Use a spreadsheet or calculator to generate a list with this formula.

() bradsdegrees angle256360angle ×=

Remember to round up if the value to the right of the decimal point is 5 to 9 or
down if it's 1 to 4.

√ Compare your results to the Debug Terminal display. How many exact matches
occurred for */ 360? How many occurred for */ 361?

Page 92 · Smart Sensors and Applications

Measuring Tilt Angle On the Vertical Plane

The angle of your board's clockwise rotation in the vertical plane (θ) is the arctangent of
the gravity's effect on the MX2125's y-axis (Ay) divided by its effect on its x-axis (Ax), as
shown in Figure 3-20.

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

X

Y1
A
A

tanθ

Figure 3-20
Clockwise Vertical
Rotation

Here are a few examples of what the accelerometer detects and how it relates to the
arctangent of the ratio of Ay to Ax. Figure 3-21 shows what the accelerometer senses at
the 0° mark. If θ is 0°, then Ay senses 0-gravity (g), and Ax senses 1 g, the arctangent of
0/1 is 0°.

Figure 3-21: Accelerometer Rotated 0°

 °=⎟
⎠

⎞
⎜
⎝

⎛− 0
1
0tan 1

When the accelerometer is rotated 30° clockwise, as shown in Figure 3-22, the
component of gravity acting on the accelerometer's x-axis is approximately √3/2 g. The

Chapter 3: Tilt with the Memsic Accelerometer · Page 93

component of gravity acting on the y-axis is 1/2 g, and the arctangent of √3/2 ÷ 1/2 is
30°.

Figure 3-22: Accelerometer Rotated 30° Clockwise

°=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

− 30

2
3
2
1

tan 1

When the accelerometer is rotated to 135° clockwise as in Figure 3-23, the component of
gravity acting on the accelerometer's x-axis is Ax = -1/√2, and the component acting on
its y-axis is 1/√2. The arctangent of 1/√2 ÷ (−1/√2) is 135°.

Figure 3-23: Accelerometer Rotated 135° Clockwise

°=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
− 135

2
1
2
1

tan 1

Page 94 · Smart Sensors and Applications

The General Case

The angle of rotation (θ) is the inverse tangent or arctangent of the component of gravity
acting on the Memsic 2125’s Y sensing (AY) divided by the component of gravity acting on
the X sensing axis (AX). The figure below shows the MX2125 tilted at an angle θ, which
rotates both sensing axes by θ. By applying a couple of geometry identities, θ is also inside
the two triangles that show the components of gravity acting on each of the accelerometers
sensing axes (xm and ym). The component of gravity acting on xm is AX = g cosθ, and the
component acting on ym is AY = g sinθ. After applying the trig identities shown on the right, it
demonstrates that the angle of rotation θ is in fact the arctangent of AY/AX.

()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

==

−

−−

X

Y

X

Y

X

Y

X

Y

A
A

tanθ

A
A

tanθtantan

A
A

θtan

θtan
θcosg
θsing

A
A

1

11

Example Program: VertWheelRotation.bs2

This program displays your board's angle of rotation as shown in Figure 3-20 at the
beginning of this activity, page 92.

Chapter 3: Tilt with the Memsic Accelerometer · Page 95

√ Enter, save, and run VertWheelRotation.bs2.
√ Hold the board in vertically in front of you like a steering wheel.
√ Rotate the board clockwise, and watch the angle measurement grow.
√ Verify that the display angle ranges from 0 to 359.

' Smart Sensors and Applications - VertWheelRotation.bs2
' Mount accelerometer on a vertical wheel and measure
' the rotation angle.

'{$STAMP BS2}
'{$PBASIC 2.5}

angle VAR Word
x VAR Word
y VAR Word

DO

 PULSIN 6, 1, x
 PULSIN 7, 1, y

 x = (x MIN 1875 MAX 3125) - 1875 ** 13369 - 127
 y = (y MIN 1875 MAX 3125) - 1875 ** 13369 - 127

 angle = x ATN y
 angle = angle */ 361

 DEBUG HOME, CLREOL, SDEC ? x,
 CLREOL, SDEC ? y,
 "angle = ", CLREOL,
 DEC angle,
 176 ' ASCII 176 is degree symbol

 PAUSE 100

LOOP

Your Turn - Debug Terminal Behavior

This DEBUG command below displays signed values of the x and y variables followed by
angle and the degree symbol (which is the ASCII code 176). The reason CLREOL comes
before each number is to prevent characters that don't disappear on the right of some
measurements. For example, if one measurement is −105, and the next measurement is
076, it will display as 0755 if the CLREOL doesn't clear the previous value before
displaying the new one. Although CLS can fix this problem too, the Debug Terminal

Page 96 · Smart Sensors and Applications

flicker that results is not pleasant to examine for any length of time. CLREOL erases to the
right of the cursor on a given line. While it still causes a little bit of flicker in each value,
you'll likely agree that it's much easier to look at than the CLS version.

 DEBUG HOME, CLREOL, SDEC ? x,
 CLREOL, SDEC ? y,
 "angle = ", DEC3 angle,
 176 ' ASCII 176 is degree symbol

√ Save VertWheelRotation.bs2 as VertWheelDisplayTest.bs2.
√ Replace HOME with CLS in the DEBUG command and run the program.
√ Change CLS back to HOME and run the program again. Do you see an

improvement in the display?
√ Remove the CLREOL control characters and note the effect on the display as you

rotate the board. Extra digits will appear at the end of non-negative values.
√ Put the CLREOL control characters back in and run the program again. Those

pesky extra digits that didn’t disappear before should be gone.

Your Turn - LCD Display

The DEBUG command has three lines of display, and the degree symbol will need a
custom character. Here is an initialization command for the LCD that does three things:
(1) start the LCD, (2) display text that doesn't change, and (3) defines Custom Character
7 as the degree symbol " ° ."

' Initialize LCD
PAUSE 200
SEROUT 14, 84, [22, 12]
PAUSE 5

SEROUT 14, 84, [130, "angle = ", DEC angle, 7,
 150, "x=", SDEC x,
 157, "y=", SDEC y]

SEROUT 14, 84, [255, ' Define Custom Character 7
 %01000, ' *
 %10100, ' * *
 %01000, ' *
 %00000, '
 %00000, '
 %00000, '
 %00000, '
 %00000] '

Chapter 3: Tilt with the Memsic Accelerometer · Page 97

Custom Character Definitions Remember, 248 defines Custom Character 0. 249 defines
Custom Character 1. 250 defines Custom Character 2, and so on, up to 255, which defines
Custom Character 7.

The DEBUG command that the SEROUT command has to replace uses three lines in the
Debug Terminal. The SEROUT command below only uses two. To minimize LCD
display flicker, only the digits are erased before the new digits are printed. The SEROUT
places the cursor at 138 (Line 0, character 10), then overprints the previous measurement
with five spaces. Then, it places the cursor at 138 again and displays the new degree
measurement with DEC angle. Finally, it prints the degree sign with Custom Character 7.
This is repeated for the x and y measurements, but there only need to be four spaces
between quotes following cursor positions 152 and 159.

' LCD Display Routine
SEROUT 14, 84, [138, " ", 138, DEC angle, 7,
 152, " ", 152, SDEC x,
 159, " ", 159, SDEC y]

√ Save VertWheelRotation.bs2 as VertWheelRotationLcd.bs2.
√ Insert the initialize LCD routine between the variable declarations and the DO

keyword.
√ Replace the DEBUG command in the DO...LOOP with the LCD Display Routine.
√ Change PAUSE 100 to PAUSE 350.
√ Run the program and test your LCD rotation display.

Your Turn - Rotation in the Opposite Direction

Diagrams that show the rotation angle increasing as the object rotates counterclockwise,
like Figure 3-24, are quite a bit more common than the clockwise diagram we used
previously.

Figure 3-24
Angle Measurement with
Counterclockwise Rotation

Page 98 · Smart Sensors and Applications

To reverse the angle of rotation the that program displays, all you have to do is use −Ay
instead of Ay. Take a look at Figure 3-25. If you rotate the accelerometer
counterclockwise, Ay is −1/2, and the arctangent turns out to be 330°. By taking the
arctangent of −Ay/Ax, the result is 30°.

Figure 3-25: Reversing Direction of Rotation with -Ay

°=

°=

11

11

30

2
3
2
1

tan
Ax
Ay

tan

330

2
3
2
1

tan
A
A

tan
X

Y

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

−−

−−

This change is easy to make in the program. Simply insert a negative sign before the y in
angle = x ATN y.

√ Save VertWheelRotation.bs2 as VertWheelRotationCounterclockwise.bs2
√ Change angle = x ATN y to angle = x ATN −y.
√ Run the program and verify that the rotation angle now increases as you rotate

the board counterclockwise.

ACTIVITY #6: MEASURE TILT FROM THE HORIZONTAL
This activity measures how far the Board of Education is tilted from the horizontal.
Figure 3-26 shows the Board of Education with the Memsic Accelerometer on the
breadboard. The accelerometer's acceleration-sensing axes (xm and ym) point toward the
top and left of the Board of Education. This activity develops a program that displays the
tilt angle for each axis. When the board is held level, the tilt angle is 0° for both the xm
an ym axes. If you tilt the board so that ym points up, the program will report a positive
tilt angle for the y-axis. If you tilt it so that ym points down, it will report a negative tilt
angle. The same applies for xm; point it up for a positive tilt angle or down for a negative
tilt angle. If you tilt the board towards one of its corners, the program will report tilt for
both the xm and ym axes.

Chapter 3: Tilt with the Memsic Accelerometer · Page 99

Figure 3-26: Tilt Axes on the Board of Education

Sine and Cosine

Figure 3-27 shows the relationship between the sides of a right triangle and the sine and
cosine functions. The sine of an angle is the opposite side of the triangle (y) divided by
the hypotenuse (h). If you know h and y, and want to know the angle (θ), use arcsine
(sin−1). The cosine of the angle is the adjacent side (x) divided by h. If you want to know
the angle given x and h, use arccosine (cos−1).

h
xθcos

h
yθsin

=

=

Figure 3-27
Sine and Cosine

Page 100 · Smart Sensors and Applications

Note from the equations for Figure 3-27 that the x value can be at most the same as h
when θ = 0°. Likewise, the y value can be at most h when θ = 90°. For angles between 0
and 90°, the ratio of x/h and y/h are both less than 1. It doesn't matter how large the
triangle is, the ratio will always be between 1 and 0.

The unit circle is a common device for describing the sine and cosine functions. The
triangle's hypotenuse becomes the radius of the circle. The unit circle is so named
because the length of the hypotenuse is 1 (one unit). As the hypotenuse is rotated
counterclockwise, the angle θ becomes larger, or smaller if it is rotated clockwise. The
cosine is determined by drawing a vertical line from the point where the hypotenuse
meets the circle down (or up if the hypotenuse is below) to the x-axis. Whatever the x
value is, that's the cosine. The sine of the angle is determined by drawing a line from the
end of the radius horizontally to the y-axis.

Figure 3-28: Unit Circle Sine and Cosine Examples

a. b. c.

The range from 0 to 90° is the unit circle's Quadrant 1. When θ is in Quadrant 1, both the
cosine and sine of the angle will be positive numbers. When θ is between 90 and 180°
(Quadrant 2), the cosine becomes negative but the sine is still positive. In Quadrant 3,
both sine and cosine are negative, and in Quadrant 4, the sine is still negative but cosine
is positive again. Notice in Figure 3-28 (c) that a negative value of θ (between 0 and
−90) can be in Quadrant 4 just as a value between 270 and 360°. One other thing to keep
in mind here is that the minimum value for both sine and cosine is −1, and the maximum
value is 1. For example, when θ = 0°, cos θ = 1, and sin θ = 0. If θ = 90°, sin θ = 1 and
cos θ = 0. At θ = 180°, cos θ = −1 and sin θ = 0.

Chapter 3: Tilt with the Memsic Accelerometer · Page 101

Figure 3-29 shows the BASIC Stamp version of a unit circle for its SIN and COS
operators. Instead of results that range from −1 to 1, the results for SIN and COS range
from −127 to 127. Angles for the SIN and COS operators are in terms of brads. So,
instead of 45°, use 32 brads. Instead of 90°, use 64 brads, and so on. To convert from
brads to degrees with a calculator, multiply the number of brads by 360/256. To convert
from degrees to brads, use 256/360.

Figure 3-29
BASIC Stamp Unit
Circle Sine and
Cosine Operators

Example Program: SineCosine.bs2

This example program displays the BASIC Stamp integer calculations for sine and
cosine. You can divide these values by 127 to get an approximation of the actual sine or
cosine values. It converts degrees to brads with ** 46733, which was derived using the
ScaleConstant equation from Activity #3.

√ Enter, save and run SineCosine.bs2
√ Compare the results (divided by 127) to calculated values of sine and cosine.

' Smart Sensors and Applications - SineCosine.bs2
' Display BASIC Stamp sine and cosine values.

' {$STAMP BS2}
' {$PBASIC 2.5}

degrees VAR Word
brads VAR Word

Page 102 · Smart Sensors and Applications

sine VAR Word
cosine VAR Word

DEBUG "Degrees Brads Cosine Sine", CR

FOR degrees = 0 TO 359 STEP 15

 brads = degrees ** 46733
 sine = SIN brads
 cosine = COS brads
 DEBUG " ",
 SDEC3 degrees, " ",
 SDEC3 brads, " ",
 SDEC3 cosine, " ",
 SDEC3 sine, CR

NEXT

END

Your Turn - Program Modifications

√ Try modifying the FOR...NEXT loop's STEP argument to get different values.
√ Try modifying the program so that it prompts you for a degree value with the

DEBUGIN command and then displays the result.

Arcsine and Arccosine Subroutines

While the sine is a ratio of y/h for a given angle, arcsine (sin−1) is the inverse, as you can
see in Figure 3-30. Given the ratio y/h, arcsine tells you the angle. Likewise, cosine is
the ratio of x/h for a given angle, and arccosine (cos−1) is the angle for a given ratio of
x/h.

h
xcosθ

h
xθcos

h
y

sinθ
h
y

θsin

1

1

−

−

==

==

Figure 3-30
Sine, Arcsine, Cosine, and
Arccosine

While the BASIC Stamp does not have ASIN and ACOS operators, Tracy Allen, author
of the Stamps in Class text Applied Sensors, published some very nice subroutines that

Chapter 3: Tilt with the Memsic Accelerometer · Page 103

perform these functions on his web site www.emesystems.com. The next example
program uses modified versions of these subroutines.

Remember that the SIN and COS operators return values between −127 and 127. If you
divide the result by 127, you'll get a value between −1 and 1 that is an approximation of
the actual sine (y/h) or cosine (x/h) ratios. With the Arcsine and Arccosine
subroutines, you can set a variable named side to a value between −127 and 127, and the
subroutine will store the degree measurement results in the angle variable.

If you want the Arcsine and Arccosine subroutines to return brads instead of
degrees, just make three changes:

In the Arccosine subroutine, comment the line of code that converts from brads to
degrees:

' angle = angle */ 361 ' Convert brads to degrees

Then, in the IF...THEN statement change 180 to 128 because we are now using a 256-
division circle:

IF sign = Negative THEN angle = 128 - angle

Likewise, in the Arccosine subroutine change 90 to 64:

angle = 64 - angle

Example Program: TestArcsine.bs2

This next program sweeps sine values from −127 to 127, and its Arcsine subroutine
converts these sine values back to degree angles. Keep in mind that this is the reverse of
the calculations in the previous example program. The previous example program
displayed sine values for given angles. This one displays angles for given sine values.

√ Enter, save, and run TestArcsine.bs2
√ Compare the results to the sine values calculated in the previous example

program.

' -----[Title]--
' Smart Sensors and Applications - TestArcsine.bs2
' Test arcsine for sine values from -127 to 127.

' {$STAMP BS2} ' BASIC Stamp Directive
' {$PBASIC 2.5} ' PBASIC Directive

Page 104 · Smart Sensors and Applications

' -----[Constants]--

Negative CON 1 ' Sign - .bit15 of Word variables
Positive CON 0

' -----[Variables]--

sine VAR Word ' sine in circle r = 127
side VAR Word ' trig subroutine variable
angle VAR Word ' result angle - degrees
sign VAR Bit ' Sign bit

' -----[Initialization]---

DEBUG CLS ' Clear Debug Terminal
sine = -128 ' Start y at -128

' -----[Main Routine]---

DO UNTIL sine = 127 ' Sweep from y = -127 to y = 127
 sine = sine + 1 ' Increment by 1
 side = sine ' Set side to y
 DEBUG "sine = ", SDEC sine, " " ' Display sine value
 GOSUB Arcsine ' Calculate arcsine
 DEBUG SDEC ? angle ' Display the result angle
LOOP ' Repeat DO...LOOP

END ' End program

' -----[Subroutine - Arcsine]---

' This subroutine calculates arcsine based on the y coordinate on a circle
' of radius 127. Set the side variable equal to your y coordinate before
' calling this subroutine.

Arcsine: ' Inverse sine subroutine
 GOSUB Arccosine ' Get inverse cosine
 angle = 90 - angle ' sin(angle) = cos(90 - angle)
 RETURN

' -----[Subroutine - Arccosine]---

' This subroutine calculates arccosine based on the x coordinate on a circle
' of radius 127. Set the side variable equal to your x coordinate before
' calling this subroutine.

Arccosine: ' Inverse cosine subroutine
 sign = side.BIT15 ' Save sign of side
 side = ABS(side) ' Evaluate positive side
 angle = 63 - (side / 2) ' Initial angle approximation
 DO ' Successive approximation loop

Chapter 3: Tilt with the Memsic Accelerometer · Page 105

 IF (COS angle <= side) THEN EXIT ' Done when COS angle <= side
 angle = angle + 1 ' Keep increasing angle
 LOOP
 angle = angle */ 361 ' Convert brads to degrees
 IF sign = Negative THEN angle = 180 - angle' Adjust if sign is negative.
 RETURN

Your Turn - Testing the Arccosine Subroutine

Here are some modifications you can make to TestArcsine.bs2 to make it test the
Arccosine subroutine instead.

√ Save TestArcsine.bs2 as TestArccosine.bs2.
√ Update the comments in the title section. Cosine values will be swept from 127

to −127.
√ Change sine VAR Word to cosine VAR Word in the Variables section.
√ Change sine = −128 to cosine = 128 in the Initialization section
√ Modify the Main Routine so that it looks like this

DO UNTIL cosine = -127
 cosine = cosine - 1
 side = cosine
 DEBUG "cosine = ", SDEC cosine, " "
 GOSUB Arccosine
 DEBUG SDEC ? angle
LOOP

END

√ Run the modified test program. As cosine sweeps from 127 to -127, the angle
should sweep from 0 to 180°.

Displaying Accelerometer Tilt Angle

Figure 3-31 shows the Board of Education with a Memsic Accelerometer. The figure
also shows a close-up of the accelerometer module and its xm and ym acceleration sensing
axes. These sensing axes detect components of the earth's acceleration due to gravity.
As you tilt a given axis toward vertical, larger components of the earth's 1 g act on the
axis.

Page 106 · Smart Sensors and Applications

Figure 3-31: Tilting the Board of Education, Tilting the Memsic Accelerometer

Figure 3-32 shows how arcsine can be used to determine the tilt angle. Looking at the
Memsic Accelerometer Module from the side, the component of gravity acting on its xm
is the x-axis acceleration (Ax), which is g × sin θ. Since sin θ is equal to Ax / g, θx can be
determined by taking the arcsine of Ax / g. In terms of an equation, that's :

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

g
A

sinθ X1
X

The same principle applies to the accelerometer's ym axis, and the result is:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

g
A

sinθ Y1
X

Chapter 3: Tilt with the Memsic Accelerometer · Page 107

Figure 3-32: Determining Tilt Angle with Arcsine

()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=

=

=

−

−−

g
A

sinθ

g
A

sinθsinsin

g
A

θsin

θsin
g

A

θsingA

X1

X11

X

X

X

With the MX2125, a measurement of 1875 is −1 g, and a measurement of 3125 is 1 g. In
Activity #3, we scaled this to a range of −127 to 127. Remember that −127 is the
equivalent of −1 for the Arcsine subroutine, and 127 is the equivalent of 1. Anything
between −127 and 127 is the equivalent of a fraction, and coming from the MX2125, it's
actually sin θ. So, once the MX2125's measurement has been scaled to −127 to 127, all
you have to do is use the Arcsine subroutine to determine the tilt angle (the value of θ).

The simplest way to write a tilt program is to start with the previous example program,
TestArcsine.bs2. Then, incorporate the accelerometer measurement and scaling and
offset commands from TestScaleOffset.bs2 and the accelerometer measurements from
VertWheelRotation.bs2. This program's Main Routine boils down to two commands for
measuring the x and y axes, two commands for scaling, and two small routines that call
the Arcsine subroutine and display the result.

DO

 PULSIN 6, 1, x
 PULSIN 7, 1, y

 x = (x MIN 1875 MAX 3125) - 1875 ** 13369 - 127
 y = (y MIN 1875 MAX 3125) - 1875 ** 13369 - 127

Page 108 · Smart Sensors and Applications

 side = x
 GOSUB Arcsine
 DEBUG HOME, "x tilt angle = ", CLREOL, SDEC3 angle, CR

 side = y
 GOSUB Arcsine
 DEBUG "y tilt angle = ", CLREOL, SDEC3 angle

 PAUSE 100

LOOP

Example Program: HorizontalTilt.bs2

This example program displays your board's tilt in terms of degrees from horizontal.

√ Enter, save and run HorizontalTilt.bs2.
√ Compare various tilt angles to the Debug Terminal's axis display.

' -----[Title]--
' Smart Sensors and Applications - HorizontalTilt.bs2
' Test arcsine for sine values from -127 to 127.

' {$STAMP BS2} ' BASIC Stamp Directive
' {$PBASIC 2.5} ' PBASIC Directive

' -----[Constants]--

Negative CON 1 ' Sign - .bit15 of Word variables
Positive CON 0

' -----[Variables]--

x VAR Word ' Memsic x-axis measurement
y VAR Word ' Memsic y-axis measurement

side VAR Word ' trig subroutine variable
angle VAR Word ' result angle - degrees
sign VAR Bit ' Sign bit

' -----[Initialization]---

DEBUG CLS ' Clear Debug Terminal

' -----[Main Routine]---

DO

 PULSIN 6, 1, x ' x-axis measurement

Chapter 3: Tilt with the Memsic Accelerometer · Page 109

 PULSIN 7, 1, y ' y-axis measurement

 ' Scale and offset x and y-axis values to -127 to 127.
 x = (x MIN 1875 MAX 3125) - 1875 ** 13369 - 127
 y = (y MIN 1875 MAX 3125) - 1875 ** 13369 - 127

 ' Calculate and display Arcsine of x-axis measurement.
 side = x
 GOSUB Arcsine
 DEBUG HOME, "x tilt angle = ", CLREOL, SDEC3 angle, CR

 ' Calculate and display Arcsine of y-axis measurement.
 side = y
 GOSUB Arcsine
 DEBUG "y tilt angle = ", CLREOL, SDEC3 angle

 PAUSE 100 ' Pause 1/10 second

LOOP ' Repeat DO...LOOP

' -----[Subroutine - Arcsine]---

' This subroutine calculates arcsine based on the y coordinate on a circle
' of radius 127. Set the side variable equal to your y coordinate before
' calling this subroutine.

Arcsine: ' Inverse sine subroutine
 GOSUB Arccosine ' Get inverse cosine
 angle = 90 - angle ' sin(angle) = cos(90 - angle)
 RETURN

' -----[Subroutine - Arccosine]---

' This subroutine calculates arccosine based on the x coordinate on a circle
' of radius 127. Set the side variable equal to your x coordinate before
' calling this subroutine.

Arccosine: ' Inverse cosine subroutine
 sign = side.BIT15 ' Save sign of side
 side = ABS(side) ' Evaluate positive side
 angle = 63 - (side / 2) ' Initial angle approximation
 DO ' Successive approximation loop
 IF (COS angle <= side) THEN EXIT ' Done when COS angle <= side
 angle = angle + 1 ' Keep increasing angle
 LOOP
 angle = angle */ 361 ' Convert brads to degrees
 IF sign = Negative THEN angle = 180 - angle' Adjust if sign is negative.
 RETURN

Page 110 · Smart Sensors and Applications

Your Turn - LCD Display

Modifying the example program to display the tilt measurements on the Parallax Serial
LCD is still a matter of adding an Initialization routine and porting DEBUG commands to
SEROUT commands. As with the program from Activity #5, this program displays
characters that don't change in the Initialization routine to prevent display flicker.

√ Save HorizontalTilt.bs2 as HorizontalTiltLcd.bs2
√ Replace the DEBUG command in the Initialization routine with this.

' Initialize LCD
PAUSE 200
SEROUT 14, 84, [22, 12]
PAUSE 5

SEROUT 14, 84, [128, "x-tilt=",
 148, "y-tilt="]

SEROUT 14, 84, [255, ' Define Custom Character 7
 %01000, ' *
 %10100, ' * *
 %01000, ' *
 %00000, '
 %00000, '
 %00000, '
 %00000, '
 %00000] '

√ Replace the first DEBUG command in the Main Routine's DO...LOOP with the
SEROUT command below. Make sure there are four spaces between the quotation
marks. The four spaces are needed to erase the maximum of four characters that
the command might send to the LCD: a negative sign, two digits, and the
Custom Character 7 degree symbol.

SEROUT 14, 84, [135, " ", 135, SDEC angle, 7]

√ Replace the second DEBUG command in the Main Routine's DO...LOOP with this.
Again, make sure to put four spaces between the quotation marks to erase the
previous value.

SEROUT 14, 84, [155, " ", 155, SDEC angle, 7]

√ Change PAUSE 100 to PAUSE 350.
√ Run the program and test the display.

Chapter 3: Tilt with the Memsic Accelerometer · Page 111

Your Turn - Adjustments

If your display did not go all the way to 90° when you held your board with a particular
axis vertical, you can customize your scaling and offset to get it to fit. This will involve
determining your accelerometer's actual output scale. If it's really 1865 to 3100, repeat
the steps in Activity #3 to make the scaling and offset corrections.

Page 112 · Smart Sensors and Applications

SUMMARY
This chapter focused on sensing the acceleration due to gravity with the Memsic 2125
Dual Axis Accelerometer. Sensing gravity makes it possible to measure both tilt and
rotation. The Memsic Accelerometer transmits pulses that indicate the acceleration
acting on its x and y axes. At room temperature, the pulses range from 3750 to 6250 µs,
which can be used to measure a range of −1 to 1 g with either one of the accelerometer's
two sensing axes. The PULSIN command is used to measure these pulses, and since it
measures time in 2 µs units, the range which programs have to examine is 1875 to 3125.

Accelerometer measurements can be displayed with the Parallax Serial LCD. If the
program has already been tested with the Debug Terminal, displaying measurements with
the serial LCD is typically a matter of adding an LCD initialization routine to the
beginning of the program and using SEROUT commands in place of DEBUG commands.
Custom characters come in handy for displaying the degree symbol (°), and the Greek
letter mu (µ).

The accelerometer can be used to measure rotation in the vertical plane. To do this, the
BASIC Stamp must calculate the arctangent of the accelerometer's y-axis measurement,
divided by its x-axis measurement. The x and y axis measurements have to be scaled and
offset to fit in a range of −127 to 127, which is what the PBASIC ATN operator needs to
return an angle, measured in binary radians. While degrees separate a circle into 360
segments, binary radians separate it into 256 segments. The PBASIC */ operator can be
used to convert a given binary radian measurement to degrees.

The accelerometer can also be used to measure tilt angles. Since the component of
gravity acting on each of the accelerometer's sensing axes is the sine of the tilt angle, the
inverse sine or arcsine can be used on an axis' measurement to determine the tilt angle.
An Arcsine subroutine can be used to calculate the angle (in degrees) given a value that
ranges from −127 to 127. This range corresponds to sine values of −1 to + 1.

Since both the ATN operator and the Arcsine subroutine expect a value between −127
and 127, techniques for scaling and offsetting the accelerometer measurements were
introduced. The range of measurements the BASIC Stamp collects from the
accelerometer are on a scale of 1875 to 3125. The most efficient way to scale these
values to a range of −127 to 127 involves subtracting 1875 to zero-align the range, then
using the ** operator to reduce the scale, then subtracting 127. This is the resulting line

Chapter 3: Tilt with the Memsic Accelerometer · Page 113

of code: value = (value MIN 1875 MAX 3125) - 1875 ** 13369 - 127. The
value 13369 is determined by the ** scale constant equation in Activity #2.

Questions

1. What are seven quantities you can measure with an accelerometer?
2. What does MEMS stand for?
3. What moves inside the MX2125 when you tilt it?
4. Can gravity be considered a form of acceleration?
5. What do you have to do to a program that displays measurements in the Debug

Terminal to make it display measurements in a serial LCD instead?
6. How can you restrict a variable to a range of values?
7. How can you orient your board to apply 1 g to the accelerometer's x-axis?
8. How can you orient your board to apply 0 g to both axes?
9. What's the difference between a binary radian and a degree?
10. What range of values do the SIN and COS operators accept? What do these

values represent?
11. How can you convert from brads to degrees?
12. What range of values does the ATN operator accept? What do these values

represent?
13. Why can you use ATN to calculate your board's angle of rotation?
14. What range of values is the Arccosine subroutine designed to accept? What do

these values represent?
15. What range of values is the Arcsine subroutine designed to accept? What do

these values represent?
16. Why is it necessary to use the Arcsine subroutine to determine tilt angle?

Exercises

1. Write a command that receives the acceleration measurement from the
accelerometer's y-axis output pin connected to P10.

2. Write a command that receives the acceleration measurement from the
accelerometer's x-axis output pin connected to P9.

3. Write a command that converts the x-axis measurement to microseconds.
4. Write a command that converts the x-axis measurement to milliseconds.
5. Write a line of PBASIC code that scales a range from 0 to 100 to a range of 20 to

32.

Page 114 · Smart Sensors and Applications

Projects

1. Design a device that counts the number of times you rotate your board on the
vertical plane. Assume you are starting at 0˚.

2. Design a device that displays an alarm message every time it has been tilted
beyond 10˚ from the horizontal.

Chapter 3: Tilt with the Memsic Accelerometer · Page 115

Solutions

Q1. Acceleration, tilt and tilt angle, incline, rotation, vibration, collision, gravity.
Q2. Micro electro-mechanical systems.
Q3. A bubble of heated gas.
Q4. Yes, either static or dynamic.
Q5. Add an initialization routine for the LCD, and convert the DEBUG commands to

SEROUT commands.
Q6. Use the MAX and MIN operators.
Q7. Tilt it up on its longer edge, with the servo ports up. (As in Figure 3-14a).
Q8. Place it flat on a table.
Q9. The degree splits a circle into 360 units, whereas a binary radian splits a circle

into 256 units.
Q10. 0 to 255. They represent the angle, in brads (binary radians).
Q11. Degrees = brads * 360 / 256.
Q12. -127 to +127, which represents the opposite and adjacent sides of the triangle.
Q13. Since the accelerometer will measure the acceleration acting on the Memsic's ym

axis, as well as that along it's xm axis, the ATN of Ay/Ax can be used to find the
angle of rotation from the vertical plane, along which g is acting.

Q14. From -127 to 127, which represents the length of the x side of the triangle.
Q15. From -127 to 127, which represents the length of the y side of the triangle.
Q16. We know from geometry that the component of gravity acting on the

accelerometer is g sin θ, so to get the angle we must take the arcsine.
E1. y VAR Word

PULSIN 10, 1, y
E2. x VAR Word

PULSIN 9, 1, x
E3. x = x * 2
E4. x = x * 2 / 1000

-OR-
x = x /500

E5. value = (value MIN 0 MAX 100) ** 8519 + 20

Page 116 · Smart Sensors and Applications

P1. Example solution:
' Smart Sensors and Applications - Ch3Proj1.bs2
' Based on VertWheelRotation.bs2, this device counts the number
' of times the board has been rotated on the vertical plane.

'{$STAMP BS2}
'{$PBASIC 2.5}

angle VAR Word
angleOld VAR Word
x VAR Word
y VAR Word
turnCount VAR Word

PAUSE 250 ' Initialize LCD
SEROUT 14, 84, [22, 12]
PAUSE 5

SEROUT 14, 84, [128, DEC5 turnCount]

DO

 PULSIN 6, 1, x
 PULSIN 7, 1, y

 x = (x MIN 1875 MAX 3125) - 1875 ** 13369 - 127
 y = (y MIN 1875 MAX 3125) - 1875 ** 13369 - 127

 angle = x ATN y
 angle = angle */ 361

 IF (angle >= 90 AND angle < 180) AND (angleOld < 90 OR angleOld >= 270) THEN
 turnCount = turnCount + 1
 angleOld = angle
 ENDIF

 IF angle >= 270 AND (angleOld >= 90 AND angleOld < 180) THEN
 turnCount = turnCount + 1
 angleOld = angle
 ENDIF

 SEROUT 14, 84, [128, DEC5 (turnCount / 2)]

LOOP

Chapter 3: Tilt with the Memsic Accelerometer · Page 117

P2. Example solution: Below is a modified main routine from HorizontalTilt.bs2

' -----[Main Routine]---

DO

 PULSIN 6, 1, x ' x-axis measurement
 PULSIN 7, 1, y ' y-axis measurement

 ' Scale and offset x and y-axis values to -127 to 127.
 x = (x MIN 1875 MAX 3125) - 1875 ** 13369 - 127
 y = (y MIN 1875 MAX 3125) - 1875 ** 13369 - 127

 ' Calculate and display Arcsine of x-axis measurement.
 side = x
 GOSUB Arcsine
 DEBUG HOME, "x tilt angle = ", CLREOL, SDEC3 angle, CR

 IF ABS(angle) > 10 THEN
 DEBUG CRSRXY, 0, 2, "Warning! Check x-axis!"
 ELSE
 DEBUG CRSRXY, 0, 2, CLREOL
 ENDIF

 ' Calculate and display Arcsine of y-axis measurement.
 side = y
 GOSUB Arcsine
 DEBUG CRSRXY, 0, 1, "y tilt angle = ", CLREOL, SDEC3 angle

 IF ABS(angle) > 10 THEN
 DEBUG CRSRXY, 0, 3, "Warning! Check y-axis!"
 ELSE
 DEBUG CRSRXY, 0, 3, CLREOL
 ENDIF

 PAUSE 100 ' Pause 1/10 second

LOOP ' Repeat DO...LOOP

Page 118 · Smart Sensors and Applications

Chapter 4: Hitachi HM55B Compass Module · Page 119

Chapter 4: The Hitachi HM55B Compass Module

The Hitachi HM55B Compass module measures direction. You can use it along with
your BASIC Stamp, Board of Education, and Parallax Serial LCD to make a digital
compass that works as shown in Figure 4-1. The module's Hitachi HM55B chip is an
increasingly common feature in automobile electronics, providing a compass heading for
the driver. The compass module is also a great tool for mobile robots, giving them a
sense of direction which can make a tremendous difference in robot team sports as well
as mazes.

Figure 4-1
Hitachi Compass Module on the
Board of Education with an LCD
Display

This chapter uses modified versions of the programs from the Hitachi HM55B Compass
Module product documentation for testing and calibration. It also introduces averaging
as a way to filter measurement noise and demonstrates how to modify the existing
example programs to display the compass heading on the Parallax Serial LCD.

INTERPRETING THE COMPASS MEASUREMENTS
The Hitachi HM55B Compass Module product documentation has example programs
that all use a subroutine named Compass_Get_Axes that returns x and y magnetic field
strength measurements. The value of x is the component of the earth's magnetic field
acting on the sensor’s xmaxis shown in Figure 4-2. The value of y is the negative of the
earth's magnetic field acting on the ym axis. If N is the value reported by x or y when it is
aligned with the earth's magnetic field, then the x measurement at some angle θ will be N
cos θ, and the y measurement will be −N sin θ. Using these facts and a couple of

Page 120 · Smart Sensors and Applications

trigonometry identities, it turns out that the angle θ is the arctangent of −y/x. So in
addition to accelerometer rotation, the compass module's angle from north is another
value that can be determined using the PBASIC ATN operator.

Figure 4-2
Compass Module Sensing Axes

()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

−
=−=

−

−−

x
ytanθ

x
ytanθtantan

x
y

θcosN
θsinNθtan

1

11

ACTIVITY #1: CONNECTING AND TESTING THE COMPASS MODULE
In this activity, you will connect the compass module to the BASIC Stamp and run a test
program. This will verify that the electrical connections are correct and the module is in
working order.

Connecting the Compass Module

The Hitachi HM55B Compass module needs connections to Vdd and Vss (power and
ground) and three communication line connections to the BASIC Stamp.

Parts Required

(1) Hitachi HM55B Compass Module
(6) Jumper wires

There are no external resistors or capacitors required; they are all built onto the module.

Chapter 4: Hitachi HM55B Compass Module · Page 121

Schematic and Wiring Diagram

The HM55B can be connected with its Dout and Din pins tied together so that they
transmit and receive signals to and from the same BASIC Stamp I/O pin. Another
BASIC Stamp I/O pin is connected to the device's clock (CLK) pin. The BASIC Stamp
will send pulses to this pin as it makes the chip send its status or measurements or receive
commands. The BASIC Stamp also sends low signals to the Compass Module's /Enable
pin before it exchanges any data, and also to initialize each magnetic field measurement.

√ Build the circuit shown in Figure 4-3.

Figure 4-3: Compass Module Schematic and Wiring Diagram

Testing the Compass Module

This example program tests to make sure the compass module is connected properly and
in working order. There may be sizeable differences between the magnetic north
reported by a mechanical compass and the one reported by the compass module. After
the calibration programs in upcoming activities, all apparent measurement errors should
disappear.

Figure 4-4 shows what the compass should display when it detects that it is facing 35°
clockwise of north. Again, don't worry about exact direction at this point because the
program is only testing to make sure the module is working. So long as you can use it to
get a general idea of north, south, east and west, it's in working order.

Page 122 · Smart Sensors and Applications

Figure 4-4: Debug Terminal Output with Compass Facing 35° Clockwise of North

Example Program: TestCompass.bs2

Free Download! This program is available as a free .bs2 file download from the Smart
Sensors and Applications Product Page at www.parallax.com.

√ Download and unzip the selected source code from the Smart Sensors and

Applications product page at www.parallax.com.
√ Open the TestCompass.bs2 file with the BASIC Stamp Editor and run the

program.
√ The Debug Terminal should display the compass x and y axis measurements and

the angle it is facing, clockwise from north.
√ If your compass reports measurements with less than a 40° error, it means it's

working and ready for the calibration program featured in Activity #2.

' -----[Title]--
' Smart Sensors and Applications - TestCompass.bs2
' Test to make sure Hitachi HM55B Compass Module is working.

' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]--

Chapter 4: Hitachi HM55B Compass Module · Page 123

DinDout PIN 2 ' P2 transceives to/from Din/Dout
Clk PIN 0 ' P0 sends pulses to HM55B's Clk
En PIN 1 ' P2 controls HM55B's /EN(ABLE)

' -----[Constants]--

Reset CON %0000 ' Reset command for HM55B
Measure CON %1000 ' Start measurement command
Report CON %1100 ' Get status/axis values command
Ready CON %1100 ' 11 -> Done, 00 -> no errors
NegMask CON %1111100000000000 ' For 11-bit negative to 16-bits

' -----[Variables]--

x VAR Word ' x-axis data
y VAR Word ' y-axis data
status VAR Nib ' Status flags
angle VAR Word ' Store angle measurement

' -----[Main Routine]---

DO ' Main loop

 GOSUB Compass_Get_Axes ' Get x, and y values

 angle = x ATN -y ' Convert x and y to brads
 angle = angle */ 361 ' Convert brads to degrees

 DEBUG HOME, "x-axis N(-S) = ",SDEC x, ' Display axes and degrees
 CLREOL, CR, "y-axis W(-E) = ",
 SDEC y, CLREOL, CR, CR, "angle = ",
 DEC angle, " degrees", CLREOL

 PAUSE 150 ' Debug delay for slower PCs

LOOP ' Repeat main loop

' -----[Subroutine - Compass_Get_Axes]--------------------------------------

Compass_Get_Axes: ' Compass module subroutine

 HIGH En: LOW En ' Send reset command to HM55B
 SHIFTOUT DinDout,clk,MSBFIRST,[Reset\4]

 HIGH En: LOW En ' HM55B start measurement command
 SHIFTOUT DinDout,clk,MSBFIRST,[Measure\4]
 status = 0 ' Clear previous status flags

 DO ' Status flag checking loop
 HIGH En: LOW En ' Measurement status command
 SHIFTOUT DinDout,clk,MSBFIRST,[Report\4]

Page 124 · Smart Sensors and Applications

 SHIFTIN DinDout,clk,MSBPOST,[Status\4] ' Get Status
 LOOP UNTIL status = Ready ' Exit loop when status is ready

 SHIFTIN DinDout,clk,MSBPOST,[x\11,y\11] ' Get x & y axis values
 HIGH En ' Disable module

 IF (y.BIT10 = 1) THEN y = y | NegMask ' Store 11-bits as signed word
 IF (x.BIT10 = 1) THEN x = x | NegMask ' Repeat for other axis

 RETURN

Your Turn - Experiments with Magnetic Fields

There aren't all that many places where the earth's magnetic field is parallel to the ground.
It's either pointing into or up from the ground. The angle at which the Earth's magnetic
field points into or out of the ground is called inclination.

√ Hold your board level, and align your compass module's x-axis with magnetic
north. When the x-axis is aligned with north, the Debug Terminal should display
the largest x value, and the angle should read 0 degrees.

√ Keep pointing your compass north, but try tilting it up and down. Chances are
you'll find an even larger measurement at a certain tilt than you do while holding
it level. That's because the magnetic field is either pointing into, or up from, the
ground in your locale.

√ Make a note of the very largest x-axis measurement you were able to achieve.

Declination is the measure of degrees between magnetic north and true north. For the
United States, you can find information on the difference at http://nationalatlas.gov. At
the time of this writing, an article with information about both inclination and a map of
declinations was at this page:

 http://nationalatlas.gov/articles/geology/a_geomag.html

One of the maps on this page also shows the total magnetic field intensity in nanotesla
measurements. The tesla (T) is a measurement of magnetic field intensity, and nanoteslas
(nT) are billionths of teslas. The readings the compass module's x and y axes return are
in approximately millionths of teslas (µT). According to the HM55B's chip datasheet,
your compass module’s units could be anywhere from 1 to 1.6 µT.

Chapter 4: Hitachi HM55B Compass Module · Page 125

√ Find a total magnetic field intensity map that shows your locale, and then use it
to calculate the x-axis magnetic field intensity units for your compass module. If
the total magnetic field intensity was listed in nanoteslas, then your result will be
in nanoteslas per x-axis unit. To convert to microteslas, divide your result by
1000.

reading axis x

intensityfieldmagnetictotal
 units axis x =

The compass module can also sense magnetic fields from magnets, but magnets can also
damage the sensor! BE CAREFUL!

Do not place powerful magnets close to the compass module!

Keep bar, horseshoe, and electro magnets well away from your compass module until you
have determined a safe distance using the procedure below. Make sure not to ever place
them close enough to cause x or y-axis readings larger than ±300, because it could damage
the module.

√ Start by setting your board on a table and lining up its x-axis with magnetic

north.
√ Hold a bar magnet above the compass module with its S pole pointing north and

its N pole pointing south as shown in Figure 4-5. Start from 1 m above, and
lower it until the Debug Terminal reports an x-axis reading of 120.

Page 126 · Smart Sensors and Applications

Figure 4-5: Bar Magnet’s Field above the Compass Module

√ Keep the bar magnet horizontal at the same height, and rotate it so that its N and
S poles are no longer aligned with the earth's magnetic north and south. As you
rotate it, the bar magnet’s rotation should be pretty easy to track with the Debug
Terminal.

Note how the magnetic field acting on the compass module was the opposite of what the
poles on the bar magnet showed. That's because of the way the magnetic field wraps
around from the bar magnet's north to south poles. Figure 4-5 illustrates this with
magnetic field lines that show the magnetic field's pattern around a bar magnet.

Chapter 4: Hitachi HM55B Compass Module · Page 127

You can also hold the bar magnet at the same level with the compass module, directly in
front of it, as shown in Figure 4-6a. This time the poles magnet's poles are lined up with
north and south instead of the opposite.

√ With the bar magnet oriented in Position 1 as shown in Figure 4-6b and your
board oriented to north, find a distance that causes an x measurement of 120.
Start from 1 m away again.

√ Next, try placing the bar magnet in positions 2 through 6. Can you use the
Debug Terminal to determine where the bar magnet is?

Figure 4-6: Finding the Safe Distance Limits

a. b.

Measurements between 127 and 300

Remember that the ATN command inputs can range from −127 to 127. If you hold the bar
magnet close enough to the compass module so that it causes measurements above 127,
you will need to scale the measurements down before using the ATN command. The
scaling procedure introduced in Chapter 3, Activity #3 will work well for this.

The bar magnet in a mechanical compass will have a similar effect. It's not a very strong
magnet, so there probably won't be a problem with getting it too close to the compass

Page 128 · Smart Sensors and Applications

module. With a mechanical compass, its bar magnet automatically lines up with north, so
you will instead have to move the compass module around the mechanical compass.

√ Try it, and note how much distortion a nearby mechanical compass causes in the
compass module’s measurements.

With this lesson in mind, make sure to keep mechanical compasses well away from the
compass module while performing and testing the calibrations in the next two activities.

ACTIVITY #2: COMPASS MODULE CALIBRATION
The calibration process involves pointing the compass module to known correct
directions as the calibration program is running. The calibration program will record the
values reported by the compass module into an unused portion of the BASIC Stamp's
EEPROM program memory. When you run the program in the next activity, it will read
these values from EEPROM and use them to determine the Compass Module's actual
heading. This is called “calibration in software” because the procedure does not make
any physical adjustments to the actual compass module.

Calibration Setup and Procedure

The setup involves aligning a compass printout and taping it to a flat surface. The
procedure involves running this activity's example program and following the prompts as
you align the Board of Education to the various spokes in the compass wheel.

Setup

√ Print or make a photocopy of Figure 4-7. If you are working from a printed copy
of the book and don't have a photocopier at your disposal, just download the .pdf
version of this text from the Smart Sensors and Applications product page at
www.parallax.com. Then, make a printout from that.

Chapter 4: Hitachi HM55B Compass Module · Page 129

Figure 4-7: Calibration Compass

√ Place your copy of Figure 4-7 on a flat, level, non metallic surface. Make sure it
is as far away from your monitor as your programming cable can reach. The
location should also be as far as possible from metal containers, appliances, and
any other potential source of magnetic field interference. Also check your table
for metal mountings underneath.

√ Before finalizing your location, take your mechanical compass well away from
any sources of magnetic interference and note the direction. Then, place the

Page 130 · Smart Sensors and Applications

mechanical compass on your work surface. The direction of north it indicates
should not change. If it does, find a different location without magnetic
interference.

√ Use the mechanical compass to align the 0° line with magnetic north as shown in
Figure 4-8.

√ Tape the printout to the table making sure not to disturb the sheet as you do so.
√ Set the mechanical compass well away from your printout.

Figure 4-8
Aligning to Magnetic
North

Procedure

When you run CalibrateCompass.bs2, it will prompt you to align your board to various
angles on the compass printout, and to press the enter key after each one. The first two
angles (0 and 90°) are shown in Figure 4-9.

Figure 4-9: Compass at 0° and 90°

 a. b.

Chapter 4: Hitachi HM55B Compass Module · Page 131

When you run CalibrateCompass.bs2, you will first be prompted to click the Debug
Terminal's Transmit windowpane (shown in Figure 4-10), and then to press Enter. After
that you will be prompted to type C for calibrate or R for review calibration settings.
Typing the letter C will start the calibration, during which you will be prompted to point
the compass to 0°, and 90° as shown in Figure 4-9, and then to: 180°, 270°, 0°, 22.5°,
45°, 67.5°, 90°, 112.5°, 135°, 157.5°, 180°, 202.5°, 225°, 247.5°, 250°, 292.5°, 315°, and
finally, 337.5°. You will need to press the Enter key before advancing your board to each
angle.

√ Open and run CalibrateCompass.bs2.
√ Follow the prompts until you get to the "CALIBRATION COMPLETED"

message.
√ If you make a mistake, restart the program and start from the beginning. The

calibration process only takes a minute or two, and it's worth it to have the
correct settings in your BASIC Stamp 2's EEPROM memory.

Figure 4-10: Transmit Windowpane

Transmit
Windowpane

Page 132 · Smart Sensors and Applications

Example Program - CalibrateCompass.bs2

Free Download! This program is available as a free .bs2 file download from the Smart
Sensors and Applications Product Page at www.parallax.com. If you would like to know how
this program works, read through the comments here.

' -----[Title]--
' Smart Sensors and Applications - CalibrateCompass.bs2
' This program collects and stores Hitachi HM55B Compass Module measurements
' in EEPROM for axis offset and linear interpolation corrections that will be
' performed by TestCalibratedCompass.bs2.
'
' {$STAMP BS2}
' {$PBASIC 2.5}
'
' IMPORTANT: Follow the instructions in Chapter #4, Activity #2 of
' Smart Sensors and Applications. It's available for
' download from the Smart Sensors and Applications page at
' www.parallax.com.

' -----[EEPROM Data]--

CompassOffsets DATA @ 0, (4) ' Stores x and y axis offsets
CompassLowVal DATA (1) ' Stores index of lowest angle
CompassCal DATA (16) ' 16 reference compass angles

' -----[Pin Definitions]---
DinDout PIN 2 ' P2 transceives to/from Din/Dout
Clk PIN 0 ' P0 sends pulses to HM55B's Clk
En PIN 1 ' P1 controls HM55B's /EN(ABLE)

' -----[Constants]--
Reset CON %0000 ' Reset command for HM55B
Measure CON %1000 ' Start measurement command
Report CON %1100 ' Get status/axis values command
Ready CON %1100 ' 11 -> Done, 00 -> no errors
NegMask CON %1111100000000000 ' For 11-bit negative to 16-bits

Current CON 0 ' Index for table array
Previous CON 1 ' Index for table array

' -----[Variables]--
x VAR Word ' x-axis data
y VAR Word ' y-axis data
status VAR Nib ' Status flags
angle VAR Word ' Angle measurement
counter VAR Byte ' Loop counter
index VAR Nib ' EEPROM index
character VAR Byte ' Stores a DEBUGIN character

Chapter 4: Hitachi HM55B Compass Module · Page 133

integer VAR Word ' Integer values for display
fraction VAR Nib ' Fractional values for display
brads VAR Byte ' Binary radian measurements
table VAR Byte(2) ' Stores table values
temp VAR Word(2) ' Stores axis measurements
axisOffset VAR Word ' Stores axis offset value

' -----[Main Routine]---

DEBUG "Click the Transmit Windowpane, ", CR, ' Wait for user.
 "then press Enter... ", CR, CR

DEBUGIN character

DO ' Main loop

 DEBUG "Type a character: ", CR, ' Menu
 "C - calibrate ", CR,
 "R - review calibration settings", CR,
 "> "
 DEBUGIN Character ' Get user selection
 DEBUG CR

 IF character = "c" OR character = "C" THEN ' "c" -> calibrate
 GOSUB Compass_Calibrate ' "r" -> review settings
 ELSEIF character = "r" OR character = "R" THEN
 GOSUB Calibration_Review
 ENDIF

 DEBUG CR, "Press any key to", ' wait for user
 CR, "continue"
 DEBUGIN character
 DEBUG CR, CR

LOOP ' Repeat main loop

' -----[Subroutine - Compass_Calibrate]-------------------------------------

 Compass_Calibrate:

 GOSUB Get_And_Store_Axis_Offsets
 GOSUB Get_And_Store_Interpolation
 GOSUB Get_And_Store_Low_Value_Address
 DEBUG CR, "CALIBRATION COMPLETED...", CR,
 "You are now ready to run ", CR,
 "TestCalibratedCompass.bs2.", CR
 RETURN

' -----[Subroutine - Get_And_Store_Axis_Offsets]----------------------------

' This subroutine prompts the user to point the compass north, then east, then

Page 134 · Smart Sensors and Applications

' south, then west. It then averages the maximum and minimum values for each
' axis and stores that average in the EEPROM area reserved by the
' CompassOffsets DATA directive.

Get_And_Store_Axis_Offsets:

 ' FOR...NEXT loop repeats for four axis measurements.
 FOR counter = 0 TO 3

 ' Instruct user to point compass to a particular direction, then wait
 ' for ENTER character.
 DEBUG CR, "Point compass to "
 LOOKUP counter, [0, 90, 180, 270], integer
 DEBUG DEC integer
 DEBUG " degrees", CR, "then press Enter..."
 DEBUGIN character

 GOSUB Compass_Get_Axes ' Get axis measurements

 ' Calculate offsets based on max and min values for each axis, then store
 ' in EEPROM.
 SELECT counter
 CASE 0 ' North
 temp(0) = x
 CASE 1 ' East
 temp(1) = y
 CASE 2 ' South
 x = x + temp(0)
 IF x.BIT15 = 1 THEN
 x = ABS(x)/2
 x = -x
 ELSE
 x = x / 2
 ENDIF
 WRITE CompassOffsets, Word x
 CASE 3 ' West
 y = y + temp(1)
 IF Y.BIT15 = 1 THEN
 y = ABS(y)/2
 y = - y
 ELSE
 y = x / 2
 ENDIF
 WRITE CompassOffsets + 2, Word y
 ENDSELECT

 NEXT

 RETURN

' -----[Subroutine - Get_And_Store_Interpolation]---------------------

Chapter 4: Hitachi HM55B Compass Module · Page 135

' This subroutine prompts the user to point the compass to directions
' separated by 22.5 degrees and stores the angle for each of the measurements
' in the EEPROM area reserved by the CompassCal DATA directive.

Get_And_Store_Interpolation:

 FOR counter = 0 TO 15
 DEBUG CR, "Point compass to "
 LOOKUP counter, [0, 22, 45, 67, 90, 112, 135, 157,
 180, 202, 225, 247, 270, 292, 315, 337], integer
 LOOKUP counter, [0, 5, 0, 5, 0, 5, 0, 5,
 0, 5, 0, 5, 0, 5, 0, 5], fraction
 DEBUG DEC integer
 IF fraction = 5 THEN DEBUG ".", DEC fraction
 DEBUG " degrees", CR, "then press Enter..."
 DEBUGIN character ' Wait for user
 GOSUB Compass_Get_Axes ' Get x, and y values
 GOSUB Compass_Correct_Offsets ' Correct axis offsets
 angle = x ATN - y ' Convert x and y to brads
 WRITE CompassCal + counter, angle ' Store as brad value
 NEXT

 RETURN

' -----[Subroutine - Get_And_Store_Low_Value_Address]-----------------------

' This subroutine finds and stores the address of the lowest value in the
' EEPROM area reserved by the CompassCal DATA directive and stores it in
' a byte reserved by the CompassLowVal DATA directive. This reduces the
' code overhead in TestCalibratedCompass.bs2.

Get_And_Store_Low_Value_Address:

 index = 8
 table(current) = 0: table(previous) = 0
 DO
 index = index + 1
 READ CompassCal + index, table(current)
 READ CompassCal + (index - 1 & $F), table(previous)
 LOOP UNTIL table(current) < table(previous)
 WRITE CompassLowVal, index

 RETURN

' -----[Subroutine - Calibration_Review]------------------------------------

 ' Display EEPROM values.

 Calibration_Review:

Page 136 · Smart Sensors and Applications

 DEBUG CR, "Axis Offsets:", CR
 READ CompassOffsets, Word x
 DEBUG CR, "x-Offset = ", SDEC x
 READ CompassOffsets + 2, Word y
 DEBUG CR, "y-Offset = ", SDEC y, CR

 DEBUG CR, "Index of low value in CompassCal:", CR
 READ CompassLowVal, index
 DEBUG CR, "Low value ", ? index

 DEBUG CR, "TestCalibratedCompass.bs2", CR,
 "uses these values to ", CR,
 "correct errors:", CR

 DEBUG CR, "Brad Angle Degree Angle",
 CR, "Ideal Actual Ideal Actual",
 CR, "------ ------ ------ ------", CR

 FOR counter = 0 TO 15
 brads = counter * 16
 DEBUG CRSRX, 1, DEC3 brads
 READ CompassCal + counter, angle
 DEBUG CRSRX, 10, DEC3 angle
 LOOKUP counter, [0, 22, 45, 67, 90, 112, 135, 157,
 180, 202, 225, 247, 270, 292, 315, 337], integer
 LOOKUP counter, [0, 5, 0, 5, 0, 5, 0, 5,
 0, 5, 0, 5, 0, 5, 0, 5], fraction
 DEBUG CRSRX, 19, DEC3 integer, ".", DEC fraction
 angle = angle */ 361 ' Convert brads to degrees
 DEBUG CRSRX, 28, DEC3 angle, CR
 PAUSE 50 ' Debug delay for slower PCs
 NEXT

 DEBUG CR

 RETURN

' -----[Subroutine - Compass_Get_Axes]--------------------------------------

Compass_Get_Axes: ' Compass module subroutine

 HIGH En: LOW En ' Send reset command to HM55B
 SHIFTOUT DinDout,clk,MSBFIRST,[Reset\4]

 HIGH En: LOW En ' HM55B start measurement command
 SHIFTOUT DinDout,clk,MSBFIRST,[Measure\4]
 status = 0 ' Clear previous status flags

 DO ' Status flag checking loop
 HIGH En: LOW En ' Measurement status command
 SHIFTOUT DinDout,clk,MSBFIRST,[Report\4]

Chapter 4: Hitachi HM55B Compass Module · Page 137

 SHIFTIN DinDout,clk,MSBPOST,[Status\4] ' Get Status
 LOOP UNTIL status = Ready ' Exit loop when status is ready

 SHIFTIN DinDout,clk,MSBPOST,[x\11,y\11] ' Get x & y axis values
 HIGH En ' Disable module

 IF (y.BIT10 = 1) THEN y = y | NegMask ' Store 11-bits as signed word
 IF (x.BIT10 = 1) THEN x = x | NegMask ' Repeat for other axis

 RETURN

' -----[Subroutine - Compass_Correct_Offsets]-------------------------------

' This subroutine corrects cumulative magnetic field interference that can
' come from sources such as the PCB, jumper wires, a nearby battery, or a
' nearby current source. This subroutine relies on values stored in
' the EEPROM space that was reserved by the CompassOffsets DATA directive.
' These EEPROM values are written by this program during calibration.

Compass_Correct_Offsets:

 READ CompassOffsets, Word axisOffset ' Get x-axis offset
 x = x - axisOffset ' Correct x-axis
 READ CompassOffsets + 2, Word axisOffset ' Get y-axis offset
 y = y - axisOffset ' Correct y-axis

 RETURN

Your Turn - Reviewing the Calibration Settings

In the main activity, you typed the letter C to store calibration values in the BASIC
Stamp's EEPROM. You can also review these calibration values by running the program
and typing R instead of C. This will show a comparison of the actual vs. ideal angle
measurements in binary radians. These errors are caused in part by the printed circuit
board that the sensor is mounted on. Some of the materials in the printed circuit board
are magnetic, and are not necessarily aligned with the Earth's magnetic field. Other
magnetic field sources that can cause measurement errors come from nearby electrical
currents, such as electrons flowing through the Vdd and Vss lines to power your board's
power LED.

√ Run CalibrateCompass.bs2 again.
√ Click the Debug Terminal's Transmit windowpane and press Enter.
√ Type R to review the calibration settings.
√ Examine the errors reported, which the example program in the next activity will

use to make corrections.

Page 138 · Smart Sensors and Applications

ACTIVITY #3: TESTING THE CALIBRATION
After Activity #2, the program in this activity should make your compass perform pretty
well, well enough to correctly recognize most of the 64 directions in Figure 4-11. In this
activity, Figure 4-11 will be used to test the compass module's performance.

Figure 4-11: 64-Direction Scale

Chapter 4: Hitachi HM55B Compass Module · Page 139

Heading

TestCalibratedCompass.bs2 goes and finds the values that CalibrateCompass.bs2
recorded in the BASIC Stamp's EEPROM memory. Then, it uses the values to correct
for scale error, and refines the measurements using a technique called linear interpolation.

√ Print or photocopy the scale shown in Figure 4-11 and following the Setup in
Activity #2 for aligning it to north and affixing it to the table.

√ Calculate the unmarked angles on the scale.
√ Open and run TestCalibratedCompass.bs2.
√ Align your board to the various angles, and compare the measured angles

reported by the compass module to the actual angles.

If this still isn't enough accuracy for you, the next activity will show you how to improve
it even more.

Example Program: TestCalibratedCompass.bs2

Free Download This program is available as a free .bs2 file download from the Smart
Sensors and Applications Product Page at www.parallax.com. Read the code comments for
an explanation of its function.

' -----[Title]--
' Smart Sensors and Applications - TestCalibratedCompass.bs2
' Demonstrates Hitachi HM55B Compass Module's accuracy after calibration with
' CalibrateCompass.bs2.

' {$STAMP BS2}
' {$PBASIC 2.5}
'

' -----[Program Description]--
'
' This program displays the following Hitachi HM55B Compass Sensor
' measurements:
'
' - Offset corrected x and y-axis magnetic field measurements
' - Binary radian angle clockwise from north corrected by linear
' interpolation table
' - Degree angle clockwise from north corrected by linear interpolation
' table

' IMPORTANT: This program relies on EEPROM values that are stored by
' CalibrateCompass.bs2 during the calibration process.

Page 140 · Smart Sensors and Applications

' That calibration process must be performed prior to running
' this test program.
'
' For instructions on how to perform the calibration process,
' consult Chapter #4, Activity #2 of
' of Smart Sensors and Applications. It's available for
' download from the Smart Sensors and Applications page at
' www.parallax.com.

' -----[EEPROM Data]--

CompassOffsets DATA @ 0, (4) ' Stores x and y axis offsets
CompassLowVal DATA (1) ' Stores index of lowest angle
CompassCal DATA (16) ' 16 reference compass angles

' -----[Pin Definitions]---

DinDout PIN 2 ' P6 transceives to/from Din/Dout
Clk PIN 0 ' P5 sends pulses to HM55B's Clk
En PIN 1 ' P4 controls HM55B's /EN(ABLE)

' -----[Constants]--

Reset CON %0000 ' Reset command for HM55B
Measure CON %1000 ' Start measurement command
Report CON %1100 ' Get status/axis values command
Ready CON %1100 ' 11 -> Done, 00 -> no errors
NegMask CON %1111100000000000 ' For 11-bit negative to 16-bits
current CON 0 ' Table array index
previous CON 1 ' Table array index

' -----[Variables]--
x VAR Word ' x-axis data
y VAR Word ' y-axis data
status VAR Nib ' Status flags
angle VAR Word ' Angle measurement
axisOffset VAR angle ' Axis offset

index VAR Status ' EEPROM index
table VAR Byte(2) ' Stores EEPROM table values
span VAR x ' Span between table entries
angleOffset VAR y ' Offset btwn measured and table

' -----[Initialization]---

DEBUG CLS

' -----[Main Routine]---

DO ' Main loop

Chapter 4: Hitachi HM55B Compass Module · Page 141

 GOSUB Compass_Get_Axes ' Get x, and y values
 GOSUB Compass_Correct_Offsets ' Correct axis offsetes
 angle = x ATN -y ' Convert x and y to brads
 DEBUG HOME, "x-axis N(-S) = ",SDEC x, ' Display corrected axes
 CLREOL, CR, "y-axis W(-E) = ",
 SDEC y, CLREOL
 GOSUB Compass_Interpolate ' Linear interpolation
 DEBUG CR, CR, "angle = ", ' Display inrerpolated angle
 DEC angle, " brads", CLREOL ' ... in brads
 angle = angle */ 361 ' Convert brads to degrees
 DEBUG CR,"angle = ", ' Display inrerpolated angle
 DEC angle, " degrees", CLREOL ' ... in degrees
 PAUSE 150 ' Debug delay for slower PCs

LOOP ' Repeat main loop

' -----[Subroutine - Compass_Get_Axes]--------------------------------------

' This subroutine handles BASIC Stamp - HM55B communication and stores the
' magnetic field strength measurements returned by the device in the x and
' y axis variables.

Compass_Get_Axes: ' Compass module subroutine

 HIGH En: LOW En ' Send reset command to HM55B
 SHIFTOUT DinDout,clk,MSBFIRST,[Reset\4]

 HIGH En: LOW En ' HM55B start measurement command
 SHIFTOUT DinDout,clk,MSBFIRST,[Measure\4]
 status = 0 ' Clear previous status flags

 DO ' Status flag checking loop
 HIGH En: LOW En ' Measurement status command
 SHIFTOUT DinDout,clk,MSBFIRST,[Report\4]
 SHIFTIN DinDout,clk,MSBPOST,[Status\4] ' Get Status
 LOOP UNTIL status = Ready ' Exit loop when status is ready

 SHIFTIN DinDout,clk,MSBPOST,[x\11,y\11] ' Get x & y axis values
 HIGH En ' Disable module

 IF (y.BIT10 = 1) THEN y = y | NegMask ' Store 11-bits as signed word
 IF (x.BIT10 = 1) THEN x = x | NegMask ' Repeat for other axis

 RETURN

' -----[Subroutine - Compass_Correct_Offsets]-------------------------------

' This subroutine corrects cumulative magnetic field interference that can
' come from sources such as the PCB, jumper wires, a nearby battery, or a
' nearby current source. This subroutine relies on values stored in
' the EEPROM space that was reserved by the CompassOffsets DATA directive.

Page 142 · Smart Sensors and Applications

' These EEPROM values were written by CalibrateCompass.bs2.

Compass_Correct_Offsets:

 READ CompassOffsets, Word axisOffset ' Get x-axis offset
 x = x - axisOffset ' Correct x-axis
 READ CompassOffsets + 2, Word axisOffset ' Get y-axis offset
 y = y - axisOffset ' Correct y-axis

 RETURN

' -----[Subroutine - Compass_Interpolate]-----------------------------------

' This subroutine applies linear interpolation to the refine the compass
' measurement. This second level of refinement can be performed after the
' Compass_Correct_Offsets subroutine, and it can correct axis skew and other
' factors inherent to the HM55B chip.
'
' The subroutine relies on 16 actual compass measurements that were stored
' in the sixteen EEPROM locations reserved by the CompassCal DATA directive.
' These measurements were stored by CalibrateCompass.bs2, and they
' represent the actual compass measurements for 0, 22.5, 45, 90,..., 337.5
' degrees. The subroutine finds the two EEPROM measurements that the current
' angle measurement falls between. It then updates the angle measurement
' based on where the angle measurement falls between the two known table
' values.

Compass_Interpolate:

 ' Start with the lowest value in the CompassCal table.

 READ CompassLowVal, index

 ' Load current and previous table values.

 READ CompassCal + index, table(current)
 READ (CompassCal + (index - 1 & $F)), table(previous)

 ' The IF...ELSEIF...ELSE...ENDIF code block finds the two EEPROM CompassCal
 ' table values that the current angle measurement falls between and
 ' calculates the difference between the current angle measurement and the
 ' lower of the two table values. The IF and ELSEIF blocks deal with values
 ' that are greater than the highest or less than the lowest table values.
 ' The ELSE block handles everything in between the highest and lowest table
 ' values.

 IF (angle >= table(previous)) THEN
 span = (255 - table(previous)) + table(current)
 angleOffset = angle - table(previous)
 ELSEIF (angle <= table(current)) THEN

Chapter 4: Hitachi HM55B Compass Module · Page 143

 span = table(current) + (255 - table(previous))
 angleOffset = angle + (255 - table(previous))
 ELSE
 index = index - 1
 READ CompassCal + index, table(current)
 DO
 table(previous) = table(current)
 index = index + 1
 READ CompassCal + index, table(current)
 IF (angle <= table(current)) AND (angle > table(previous)) THEN
 span = table(current) - table(previous)
 angleOffset = angle - table(previous)
 EXIT
 ENDIF
 LOOP
 ENDIF

 ' After the offset between the current angle measurement and the next lower
 ' table measurement has been determined, this code block uses it along with
 ' the span between the table entries above and below the angle measurement
 ' to solve for: angle(corrected) = angle(offset) * 16 / span.
 ' This code block also rounds up or down by comparing the remainder of
 ' the angleOffset / span division to the value of (span / 2).

 angleOffset = angleOffset * 16
 angle = (angleOffset / span) + ((angleOffset // span) / (span / 2))
 angle = ((index - 1 & $F) * 16) + angle
 angle = angle & $ff

 RETURN

Your Turn - Displaying "Degrees" as °

Displaying the degree ° symbol in the Debug Terminal was first introduced in Chapter
#3, Activity #5.

√ Modify the program to display degrees with ASCII character 176, the ° symbol.

ACTIVITY #4: IMPROVE COMPASS MEASUREMENTS BY AVERAGING
You may have noticed that the x and y measurements in the Debug Terminal tended to
alternate between two or even three different values. This is the result of several different
types of interference that are collectively called noise. Some common culprits are nearby
AC devices and power lines, digital activity in the BASIC Stamp, and even digital
activity inside the HM55B chip.

Page 144 · Smart Sensors and Applications

One effective way to eliminate the effects of noise is by taking an average of the
compass' x and y axis measurements. That way, if noise causes one measurement to be a
little high, the next one a little low, and the one after that is about right, the average of all
the measurements will eliminate the highs and lows and settle on the right value.

One of the reasons the calibration and calibration testing activities may not have yielded
the best results is because of noise. This activity demonstrates how you can modify any
of the example programs in this chapter, including the calibration and calibration test
programs, to take averaged measurements and eliminate the effects of noise.

Incorporating Averaging into the Compass Programs

There are three major steps to incorporating averaging into this chapter’s example
programs. First, add a couple of CON directives to the program's Constants section.

Negative CON 1 ' Word.bit15 = 1 -> negative
Positive CON 0 ' Word.bit15 = 0 -> positive

Then, add four variables to the program's Variables section.

mCount VAR Nib ' Measurement count
xSum VAR Word ' x-axis measurement accumulator
ySum VAR Word ' y-axis measurement accumulator
sign VAR Bit ' Sign bit

Finally, modify the Compass_Get_Axes subroutine as shown below. The code from the
original Compass_Get_Axes subroutine is nested in a FOR...NEXT loop that keeps a
running sum of the x and y-axis measurements with the xSum and ySum variables. Since
the average of a group of measurements is the sum of the measurements divided by the
number of measurements taken, there are code blocks after the FOR...NEXT loop that set x
equal to xSum ÷ 10 and y equal to ySum ÷ 10.

Compass_Get_Axes: ' Modified subroutine

 xSum = 0 ' Accumulators to zero
 ySum = 0

 FOR mCount = 1 TO 10 ' Take ten measurements

 ' *** Original code from Compass_Get_Axes subroutine goes here ***

 xSum = xSum + x ' Keep a running sum of x
 ySum = ySum + y ' Keep a running sum of y

 NEXT

Chapter 4: Hitachi HM55B Compass Module · Page 145

 ' Divide xSum
 sign = xSum.BIT15 ' Store sign of xSum
 xSum = ABS(xSum) ' Take absolute value
 x = xSum / 10 ' x = the average measurement
 IF xSum // 10 >=5 THEN x = x + 1 ' Fraction > .5? Round up
 IF sign = Negative THEN x = - x ' if xSum negative, negate x

 sign = ySum.BIT15 ' Store sign of ySum
 ySum = ABS(ySum) ' Take absolute value
 y = ySum / 10 ' y = the average measurement
 IF ySum // 10 >=5 THEN y = y + 1 ' Fraction > .5? Round up
 IF sign = Negative THEN y = - y ' if ySum negative, negate y

 RETURN

PBASIC Division with Negative Numbers

The PBASIC division and modulus (/ and //) operators are for use with positive numbers. If
the numerator might be negative, the best approach is to save the numerator's sign before
taking its absolute value (sign = numerator.BIT15). Then, perform the division
operation. Optionally, you can also round up or down depending on the remainder of the
division. Before you're done, check the sign, and if it's negative, make the result negative
(result = - result).

numerator VAR Word
denominator VAR Word
result VAR Word
sign VAR Bit

Negative CON 1
Positive CON 0

' Division routine with a numerator that might be negative.
 sign = numerator.BIT15
 numerator = ABS(numerator)
 result = numerator / denominator
 IF numerator // denominator >= (denominator / 2) THEN
 result = result + 1
 ENDIF
 IF sign = Negative THEN result = - result

Example Program: TestCompassAveraged.bs2

Free Download This program is available as a free .bs2 file download from the Smart
Sensors and Applications Product Page at www.parallax.com.

Page 146 · Smart Sensors and Applications

The procedure for converting a program to average its x and y-axis measurements was
applied to TestCompass.bs2, and then saved as TestCompassAveraged.bs2.

√ Open and run TestCompass.bs2 from activity #1.
√ Watch the x and y-axis measurements at a few different headings. They will

likely be noisy, flickering between two or three different values.
√ Open and run TestCompassAveraged.bs2.
√ The measurements should be much more stable. They should only flicker when

you are very close to the transition between two different results.

' -----[Title]--
' Smart Sensors and Applications - TestCompassAveraged.bs2
' Test to make sure Hitachi HM55B Compass Module is working.

' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]--

DinDout PIN 2 ' P2 transceives to/from Din/Dout
Clk PIN 0 ' P0 sends pulses to HM55B's Clk
En PIN 1 ' P2 controls HM55B's /EN(ABLE)

' -----[Constants]--

Reset CON %0000 ' Reset command for HM55B
Measure CON %1000 ' Start measurement command
Report CON %1100 ' Get status/axis values command
Ready CON %1100 ' 11 -> Done, 00 -> no errors
NegMask CON %1111100000000000 ' For 11-bit negative to 16-bits

Negative CON 1 ' Word.bit15 = 1 -> negative
Positive CON 0 ' Word.bit15 = 0 -> positive

' -----[Variables]--

x VAR Word ' x-axis data
y VAR Word ' y-axis data
status VAR Nib ' Status flags
angle VAR Word ' Store angle measurement

mCount VAR Nib ' Measurement count
xSum VAR Word ' x-axis measurement accumulator
ySum VAR Word ' y-axis measurement accumulator
sign VAR Bit ' Sign bit

' -----[Main Routine]---

Chapter 4: Hitachi HM55B Compass Module · Page 147

DO ' Main loop

 GOSUB Compass_Get_Axes ' Get x, and y values

 angle = x ATN -y ' Convert x and y to brads
 angle = angle */ 361 ' Convert brads to degrees

 DEBUG HOME, "x-axis N(-S) = ",SDEC x, ' Display axes and degrees
 CLREOL, CR, "y-axis W(-E) = ",
 SDEC y, CLREOL, CR, CR, "angle = ",
 DEC angle, " degrees", CLREOL

 PAUSE 150 ' Debug delay for slower PCs

LOOP ' Repeat main loop

' -----[Subroutine - Compass_Get_Axes]--------------------------------------

Compass_Get_Axes: ' Compass module subroutine

 xSum = 0 ' Accumulators to zero
 ySum = 0

 FOR mCount = 1 TO 10 ' Take ten measurements

 HIGH En: LOW En ' Send reset command to HM55B
 SHIFTOUT DinDout,clk,MSBFIRST,[Reset\4]

 HIGH En: LOW En ' HM55B start measurement cmd
 SHIFTOUT DinDout,clk,MSBFIRST,[Measure\4]
 status = 0 ' Clear previous status flags

 DO ' Status flag checking loop
 HIGH En: LOW En ' Measurement status command
 SHIFTOUT DinDout,clk,MSBFIRST,[Report\4]
 SHIFTIN DinDout,clk,MSBPOST,[Status\4] ' Get Status
 LOOP UNTIL status = Ready ' Status ready? Exit loop

 SHIFTIN DinDout,clk,MSBPOST,[x\11,y\11] ' Get x & y axis values
 HIGH En ' Disable module

 IF (y.BIT10 = 1) THEN y = y | NegMask ' Store 11-bits as signed word
 IF (x.BIT10 = 1) THEN x = x | NegMask ' Repeat for other axis

 xSum = xSum + x ' Keep a running sum of x
 ySum = ySum + y ' Keep a running sum of y

 NEXT

 sign = xSum.BIT15 ' Store sign of xSum

Page 148 · Smart Sensors and Applications

 xSum = ABS(xSum) ' Take absolute value
 x = xSum / 10 ' x = the average measurement
 IF xSum // 10 >=5 THEN x = x + 1 ' Fraction > .5? Round up
 IF sign = Negative THEN x = - x ' if xSum negative, negate x

 sign = ySum.BIT15 ' Store sign of ySum
 ySum = ABS(ySum) ' Take absolute value
 y = ySum / 10 ' y = the average measurement
 IF ySum // 10 >=5 THEN y = y + 1 ' Fraction > .5? Round up
 IF sign = Negative THEN y = - y ' if ySum negative, negate y

 RETURN

Your Turn - Averaging the Calibration and Calibration Test Programs

The calibration and test calibration programs significantly improve the accuracy of your
digital compass. By incorporating averaging into both programs, the accuracy of your
digital compass will be further improved.

√ Follow the steps in this activity to incorporate averaging into a copy of
CalibrateCompass.bs2. Instead of modifying the program's Compass_Get_Axes
subroutine just copy the modified subroutine from this program
(TestCompassAveraged.bs2) and paste it over the one in your copy of
CalibrateCompass.bs2.

√ Run your modified copy of CalibrateCompass.bs2 and repeat the steps in
Activity #2.

√ Make a copy of TestCalibratedCompass.bs2, and modify it to perform averaging.
√ Repeat the accuracy tests in Activity #3. Your digital compass should perform

really well now.

ACTIVITY #5: MOBILE MEASUREMENTS
This activity demonstrates how to replace the Debug Terminal with the Parallax Serial
LCD to make your digital compass mobile.

Connecting the Parallax Serial LCD with an Extension Cable

The Parallax Serial LCD is a definite source of magnetic field disturbance and needs to
be operated well away from the compass module. This is easily done with an extension
cable.

Chapter 4: Hitachi HM55B Compass Module · Page 149

Parts Required

(1) Hitachi HM55B Compass Module
(1) Parallax Serial LCD (2×16)
(1) 14-inch LCD Extension Cable
(6) Jumper Wires

If you are working from a BASIC Stamp HomeWork Board or a serial Board of
Education Rev A or B, you will also need:

(1) 3-pin header
(3) additional jumper wires

LCD Cable Connections

The schematics shown in Figure 4-12 are identical to the ones that have been used for
Compass Module and Parallax Serial LCD up to this point. The only thing that will be
changed is the way the LCD is connected to your board, with an extension cable. No
changes should be made to the compass module's wiring.

Figure 4-12
Parallax Serial LCD and
Compass Module
Schematics

Page 150 · Smart Sensors and Applications

Board of Education Rev C and USB Board of Education Cable Connections

These instructions are for the boards that have servo ports with a Vdd/Vss jumper in
between, such as the Board of Education Rev C and USB Board of Education. For all
other boards, skip to All other BASIC Stamp Educational Boards on page 151.

√ Disconnect power to your board.
√ Set the jumper between the X4 and X5 servo to Vdd (+5 V) as shown in Figure

4-13. The jumper should cover the two pins closest to Vdd, and the third pin
next to Vin should be visible.

Figure 4-13
Setting the Servo Port Jumper to Vdd

Vdd vs. Vin jumper settings determine which power supply is connected to the X4 and X5
ports. When the jumper is set to Vdd, these ports receive regulated 5 V from the Board of
Education's voltage regulator. If the jumper is set to Vin, the port receives power directly
from the battery or power supply. WARNING!! MAKE SURE YOUR JUMPER IS SET
CORRECTLY TO Vdd OR YOU WILL PERMANENTLY DAMAGE YOUR LCD!!

√ Plug one end of the extension cable into Port 14 of the X4 header, making sure

that the "Red" and "Black" labels along the right side of the X5 port line up with
the cable's red and black wires.

√ Verify that your cable is plugged in correctly by checking to make sure the white
wire is closest to the 14 label and the black wire is closest to the X4 label.

√ Connect the other end of the cable so that the black wire is connected to the
Parallax Serial LCD's GND pin, the red wire is connected to the 5 V pin, and the
white wire is connected to the RX pin.

√ Double-check all your connections and make sure they are correct.

WARNING!

Do not reconnect power to your board until you are positive the connections are
correct. If you make a mistake with the LCD connections, the Parallax Serial LCD will
be permanently damaged.

Chapter 4: Hitachi HM55B Compass Module · Page 151

Figure 4-14: Parallax Serial LCD Servo Port Connections

√ Plug the power back into the Board of Education.
√ Set the Board of Education's 3-position switch to 2.
√ Skip to Optional LCD Mounting Brackets on page 153.

All other BASIC Stamp Educational Boards

This section is for connecting the Compass Module and Parallax Serial LCD to one of the
following BASIC Stamp educational boards:

• BASIC Stamp HomeWork Board
• Board of Education Rev A (Serial version)
• Board of Education Rev B (Serial version)

√ Disconnect power from your board.
√ Build the extension cable port shown in Figure 4-15.

Page 152 · Smart Sensors and Applications

Figure 4-15
Breadboard Wiring for
Parallax Serial LCD
Cable Connection and
the Compass Module

√ Plug one end of the extension cable into the 3-pin header on the board as shown
in Figure 4-16. Make sure the white, red, and black wires are oriented as shown.
The black wire should be connected to Vss, the red wire to Vdd, and the white
wire to P14.

√ Connect the other end of the cable so that the black wire is connected to the
Parallax Serial LCD's GND pin, the red wire is connected to the 5 V pin, and the
white wire is connected to the RX pin.

Chapter 4: Hitachi HM55B Compass Module · Page 153

Figure 4-16: Compass Module and Parallax Serial LCD Connected with Extension Cable

√ Double-check all your connections and make sure they are correct.

WARNING!

Do not reconnect power to your board until you are positive the connections are
correct. If you make a mistake with the LCD connections, the Parallax Serial LCD will
be permanently damaged.

√ Reconnect power to your board.

Optional LCD Mounting Brackets

If you wish, you may mount your LCD to your Board of Education or HomeWork Board
with the brackets and hardware supplied in your kit. The parts list and directions are
given on the next page with Figure 4-17.

Page 154 · Smart Sensors and Applications

Figure 4-17: Assembling the Optional
LCD Bracket

Parts Required

(4) 90-degree mounting brackets
(2) 1/4-inch #4 round nylon spacers
(2) 1/2-inch 4-40 pan-head screws
(4) 1/4-inch 4-40 pan-head screws
(6) 4-40 zinc plated nuts

√ Thread a ¼" screw through the
outer hole of a bracket and the
top left hole in your board,
secure with a nut. Repeat at
the bottom left hole in your
board (top picture).

√ Thread a ½" screw through the
lower-left hole in the LCD
board, a nylon standoff, the
inner hole of a bracket, and
secure with a nut (2nd picture,
left).

√ Thread a ½" screw through the
lower-right hole in the LCD
board, a nylon standoff, the
outer hole of a bracket, and
secure with a nut (2nd picture,
right).

√ Using the remaining ¼"screws
and nuts, attach the LCD
brackets to the brackets on
your board, using two ¼"
screws and nuts (3rd picture).

Chapter 4: Hitachi HM55B Compass Module · Page 155

LCD Display Programming

This LCD initialization routine takes care of the LCD initialization basics, defines
Custom Character 7 to be the ° symbol, then displays static text (text that won't change
while the program is running).

' LCD Initialization routine
PAUSE 200 ' Debounce power supply
SEROUT 14, 84, [22, 12] ' Turn on & clear LCD
PAUSE 5 ' 5 ms delay for clear cmd

SEROUT 14, 84, [255, ' Define Custom Character 7
 %01000, ' *
 %10100, ' * *
 %01000, ' *
 %00000, '
 %00000, '
 %00000, '
 %00000, '
 %00000] '

SEROUT 14, 84, [129, "Heading...", ' Static characters
 149, "x=",
 158, "y="]

The SEROUT command below places the LCD's cursor, then prints spaces to overwrite the
previous value. Then it places the cursor at the same starting location and prints the new
value. This prevents ghost characters from appearing when the number of digits in the
value changes, but without the annoying side effects of screen flicker that you would
otherwise get from clearing the display between each measurement.

' LCD Display heading in degrees on top line and x and y
' measurements on the bottom line.
SEROUT 14, 84, [139, " ", 139, DEC angle, 7,
 151, " ", 151, SDEC X,
 160, " ", 160, SDEC y]

Example Program: LcdTestCompass.bs2

Free Download! This program is available as a free .bs2 file download from the Smart
Sensors and Applications Product Page at www.parallax.com.

Page 156 · Smart Sensors and Applications

This example program is a modified version of TestCompass.bs2 that uses LCD display
commands instead of Debug Terminal commands.

√ Open LcdTestCompass.bs2 try running it with the serial cable disconnected.

' -----[Title]--
' Smart Sensors and Applications - LcdTestCompass.bs2
' Test to make sure Hitachi HM55B Compass Module is working.

' {$STAMP BS2}
' {$PBASIC 2.5}

' -----[I/O Definitions]--

DinDout PIN 2 ' P2 transceives to/from Din/Dout
Clk PIN 0 ' P0 sends pulses to HM55B's Clk
En PIN 1 ' P2 controls HM55B's /EN(ABLE)

' -----[Constants]--

Reset CON %0000 ' Reset command for HM55B
Measure CON %1000 ' Start measurement command
Report CON %1100 ' Get status/axis values command
Ready CON %1100 ' 11 -> Done, 00 -> no errors
NegMask CON %1111100000000000 ' For 11-bit negative to 16-bits

' -----[Variables]--

x VAR Word ' x-axis data
y VAR Word ' y-axis data
status VAR Nib ' Status flags
angle VAR Word ' Store angle measurement

' -----[Initialization]---

' LCD Initialization
PAUSE 200 ' Debounce power supply
SEROUT 14, 84, [22, 12] ' Turn on & clear LCD
PAUSE 5 ' 5 ms delay for clear cmd

SEROUT 14, 84, [255, ' Define Custom Character 7
 %01000, ' *
 %10100, ' * *
 %01000, ' *
 %00000, '
 %00000, '
 %00000, '
 %00000, '
 %00000] '

Chapter 4: Hitachi HM55B Compass Module · Page 157

SEROUT 14, 84, [129, "Heading...", ' Static characters
 149, "x=",
 158, "y="]

' -----[Main Routine]---

DO ' Main loop

 GOSUB Compass_Get_Axes ' Get x, and y values

 angle = x ATN -y ' Convert x and y to brads
 angle = angle */ 361 ' Convert brads to degrees

 ' LCD Display heading in degrees on top line and x and y
 ' measurements on the bottom line.
 SEROUT 14, 84, [139, " ", 139, DEC angle, 7,
 151, " ", 151, SDEC X,
 160, " ", 160, SDEC y]

 PAUSE 150 ' Debug delay for slower PCs

LOOP ' Repeat main loop

' -----[Subroutine - Compass_Get_Axes]--------------------------------------

Compass_Get_Axes: ' Compass module subroutine

 HIGH En: LOW En ' Send reset command to HM55B
 SHIFTOUT DinDout,clk,MSBFIRST,[Reset\4]

 HIGH En: LOW En ' HM55B start measurement command
 SHIFTOUT DinDout,clk,MSBFIRST,[Measure\4]
 status = 0 ' Clear previous status flags

 DO ' Status flag checking loop
 HIGH En: LOW En ' Measurement status command
 SHIFTOUT DinDout,clk,MSBFIRST,[Report\4]
 SHIFTIN DinDout,clk,MSBPOST,[Status\4] ' Get Status
 LOOP UNTIL status = Ready ' Exit loop when status is ready

 SHIFTIN DinDout,clk,MSBPOST,[x\11,y\11] ' Get x & y axis values
 HIGH En ' Disable module

 IF (y.BIT10 = 1) THEN y = y | NegMask ' Store 11-bits as signed word
 IF (x.BIT10 = 1) THEN x = x | NegMask ' Repeat for other axis

 RETURN

Page 158 · Smart Sensors and Applications

Your Turn

Try extending the Your Turn from Activity #4 with the Parallax Serial LCD. Don't
worry about adding LCD functionality to the calibration program, just to the modified
calibration test program from Activity #3. You may need to recalibrate to eliminate
magnetic interference caused by the close proximity of the LCD. Add a command to the
CalibrateCompass.bs2 program's Main Routine that sends a few characters to the LCD
each time through the loop before you run it. To free up some code space, try removing a
few characters from one of the DEBUG commands in the Calibration_Review
subroutine.

Chapter 4: Hitachi HM55B Compass Module · Page 159

SUMMARY
The Hitachi HM55B Compass module is a dual-axis magnetic field sensor capable of
detecting microtesla variations in the components of the earth's magnetic field acting on
its x and y axes. The module's angle from north can be determined by dividing the x axis
measurement into the −y axis measurement, and then taking the arctangent of the result.
The compass module can also be used to detect magnetic fields from bar magnets as well
as the inclination of the earth's magnetic field at your locale.

The BASIC Stamp can store measured directions in the unused portion of its EEPROM
program memory with a calibration program. Then, a test program can access these
saved values, and use them to perform scale correction and linear interpolation on the
measurements. These correction techniques can significantly improve the direction
measurement. By averaging the axis measurements, the direction measurement can be
further refined. The direction can be displayed in text format on the Parallax Serial LCD
by adding a small initialization routine to the program's Initialization section and a
SEROUT command to the program's main DO...LOOP.

Questions

1. What's the relationship between the compass module's x-axis measurement at a
given angle and the measurement when the x-axis is aligned with magnetic
north?

2. What are the names of each of the compass module's pins that have to be
connected to BASIC Stamp I/O pins?

3. Which way does the angle from north increase in conventional compasses?
4. What's declination?
5. If you are measuring a magnetic field next to a bar magnet, how does the

direction of the magnetic field relate to its N and S markings?
6. Why can a nearby mechanical compass cause errors in the compass module's

measurements?
7. How would you average twenty measurements?
8. What variables do you have to set to zero before averaging the x and y

measurements? Why do they have to be set to zero?
9. What's the SEROUT command for defining the degree symbol? How many bytes

does it send?
10. If the number of digits in a displayed measurement might change, how do you

prevent ghost characters from appearing at the right?

Page 160 · Smart Sensors and Applications

Exercises

1. Calculate the angle from north if the x axis reading is 34 and the y-axis reading
is 0.

2. Calculate the angle from north if the x-axis reading is 16 and the y-axis reading
is 31.

3. Calculate the number of nanoteslas in 1.6 microteslas.
4. Write a routine that converts from microteslas to nanoteslas.
5. Write a routine that examines a variable and displays whether or not it is

negative.

Projects

1. Display the current heading on the serial LCD. Press and release a pushbutton to
remember that desired heading. If the heading is off by more than 5°, beep a
warning with a piezospeaker.

2. Design a prototype that can tell you when your Hitachi HM55B Digital Compass
is held level with the aid of the Memsic 2125 Accelerometer.

Chapter 4: Hitachi HM55B Compass Module · Page 161

Solutions

Q1. If N is the value reported by x when it is aligned with magnetic north, then for a
given angle theta, x = Ncosθ.

Q2. Din, Dout, /Enable, and CLK.
Q3. Clockwise from north.
Q4. Declination is the difference, in degrees, between magnetic north and true north.
Q5. The direction of the field will seem to be opposite of the N and S markings,

because of the way the magnetic field wraps around.
Q6. The mechanical compass contains a small magnet which can affect the compass

module.
Q7. Keep a running sum of all twenty measurements, then divide the total sum by 20.
Q8. The running sum of both x and y must start at zero. Once a calculation is done,

the sums will contain a large number. To do a second calculation, you must
reset the sum to zero.

Q9. The command is 255, followed by 8 bytes of character data.
SEROUT pinNumber, baudrate, [255, byte0…byte7]

Q10. First print spaces to overwrite (blank out) the previous value, then place the
cursor back at the starting point and print the new value.

E1. θ = 0° degrees from North, or due North.
E2. θ = 297.3° from North.
E3. 1.6 microtesla = 1.6 x 10-6 T = 1600 x 10-9 T = 1600 nanotesla
E4. Example routine:

Convert:
 nanoT = 1000 * microT
 RETURN

E5. Example routine:
value VAR Word

IF (value.BIT15 = 1) THEN
 DEBUG "Negative", CR
ELSE
 DEBUG "Positive", CR
ENDIF

P1. Example solution:
Assuming an active-low pushbutton is connected to P10 and a piezospeaker is
connected to P11 (See What’s a Microcontroller?, Chapters 3 and 8),
LcdTestCompass.bs2 can then be modified as follows:
Add these pin directives to the I/O definitions section:

pushbutton PIN 10
speaker PIN 11

Page 162 · Smart Sensors and Applications

Add these variables to the Variables Section:

angleMem VAR Word
difference VAR Word
alarmArm VAR Bit

Modify the last SEROUT command in the initialization routine:

SEROUT 14, 84, [128, "Alarm Angle Set ", ' Static characters
 148, "OFF "]

Modify the main routine as shown here:

' -----[Main Routine]--

DO ' Main loop

 GOSUB Compass_Get_Axes ' Get x, and y values

 angle = x ATN -y ' Convert x and y to brads
 angle = angle */ 361 ' Convert brads to degrees

 ' LCD Display heading in degrees on top line and x and y
 ' measurements on the bottom line.
 SEROUT 14, 84, [154, " ", 154, DEC angle, 7]

 IF PushButton = 1 THEN
 angleMem = angle
 alarmArm = 1
 FREQOUT speaker, 20, 3000
 SEROUT 14, 84, [148,"ON "]
 ENDIF

 difference = ABS(angle - angleMem)

 IF alarmArm = 1 THEN
 SEROUT 14, 84, [160, " ", 160, DEC angleMem, 7]
 IF difference > 5 AND difference < 355 THEN
 FREQOUT speaker, 10, 4000
 ENDIF
 ENDIF

 PAUSE 150 ' Debug delay for slower PCs

LOOP ' Repeat main loop

Chapter 4: Hitachi HM55B Compass Module · Page 163

P2. Example solution: Ch4_Project2.bs2
This program is a combination of HorizontalTilt.bs2 and TestCompass.bs2.

' -----[Title]--
' Smart Sensors and Applications - Ch4_Project2.bs2
' Display digital compass and tilt measurements with one program.

' {$STAMP BS2} ' BASIC Stamp Directive
' {$PBASIC 2.5} ' PBASIC Directive

' -----[Constants]--

Negative CON 1 ' Sign - .bit15 of Word variables
Positive CON 0

' -----[I/O Definitions]--

DinDout PIN 2 ' P2 transceives to/from Din/Dout
Clk PIN 0 ' P0 sends pulses to HM55B's Clk
En PIN 1 ' P2 controls HM55B's /EN(ABLE)

Reset CON %0000 ' Reset command for HM55B
Measure CON %1000 ' Start measurement command
Report CON %1100 ' Get status/axis values command
Ready CON %1100 ' 11 -> Done, 00 -> no errors
NegMask CON %1111100000000000 ' For 11-bit negative to 16-bits

' -----[Variables]--

xTilt VAR Word ' Memsic x-axis measurement
yTilt VAR Word ' Memsic y-axis measurement

side VAR Word ' trig subroutine variable
angleTilt VAR Word ' result angle - degrees
sign VAR Bit ' Sign bit

xCompass VAR Word ' x-axis data
yCompass VAR Word ' y-axis data
status VAR Nib ' Status flags
angleCompass VAR Word ' Store angle measurement

' -----[Initialization]---

DEBUG CLS ' Clear Debug Terminal

' -----[Main Routine]---

DO

Page 164 · Smart Sensors and Applications

 PULSIN 6, 1, xTilt ' x-axis measurement
 PULSIN 7, 1, yTilt ' y-axis measurement

 ' Scale and offset x and y-axis values to -127 to 127.
 xTilt = (xTilt MIN 1875 MAX 3125) - 1875 ** 13369 - 127
 yTilt = (yTilt MIN 1875 MAX 3125) - 1875 ** 13369 - 127

 ' Calculate and display Arcsine of x-axis measurement.
 side = xTilt
 GOSUB Arcsine
 DEBUG HOME, "x tilt angle = ", CLREOL, SDEC3 angleTilt, CR

 ' Calculate and display Arcsine of y-axis measurement.
 side = yTilt
 GOSUB Arcsine
 DEBUG "y tilt angle = ", CLREOL, SDEC3 angleTilt

 GOSUB Compass_Get_Axes ' Get x, and y values

 angleCompass = xCompass ATN -yCompass ' Convert x and y to brads
 angleCompass = angleCompass */ 361 ' Convert brads to degrees

 DEBUG CR, "Compass angle = ",
 DEC angleCompass, " degrees", CLREOL

 PAUSE 150 ' Debug delay for slower PCs

LOOP ' Repeat DO...LOOP

' -----[Subroutine - Arcsine]---

' This subroutine calculates arcsine based on the y coordinate on a circle
' of radius 127. Set the side variable equal to your y coordinate before
' calling this subroutine.

Arcsine: ' Inverse sine subroutine
 GOSUB Arccosine ' Get inverse cosine
 angleTilt = 90 - angleTilt ' sin(angle) = cos(90 - angle)
 RETURN

' -----[Subroutine - Arccosine]---

' This subroutine calculates arccosine based on the x coordinate on a circle
' of radius 127. Set the side variable equal to your x coordinate before
' calling this subroutine.

Arccosine: ' Inverse cosine subroutine
 sign = side.BIT15 ' Save sign of side
 side = ABS(side) ' Evaluate positive side
 angleTilt = 63 - (side / 2) ' Initial angle approximation
 DO ' Successive approximation loop

Chapter 4: Hitachi HM55B Compass Module · Page 165

 IF (COS angleTilt <= side) THEN EXIT ' Done when COS angle <= side
 angleTilt = angleTilt + 1 ' Keep increasing angle
 LOOP
 angleTilt = angleTilt */ 361 ' Convert brads to degrees
 IF sign = Negative THEN ' Adjust if sign is negative.
 angleTilt = 180 - angleTilt
 ENDIF
 RETURN

 ' -----[Subroutine - Compass_Get_Axes]------------------------------------

Compass_Get_Axes: ' Compass module subroutine

 HIGH En: LOW En ' Send reset command to HM55B
 SHIFTOUT DinDout,clk,MSBFIRST,[Reset\4]

 HIGH En: LOW En ' HM55B start measurement command
 SHIFTOUT DinDout,clk,MSBFIRST,[Measure\4]
 status = 0 ' Clear previous status flags

 DO ' Status flag checking loop
 HIGH En: LOW En ' Measurement status command
 SHIFTOUT DinDout,clk,MSBFIRST,[Report\4]
 SHIFTIN DinDout,clk,MSBPOST,[Status\4] ' Get Status
 LOOP UNTIL status = Ready ' Exit loop when status is ready

 ' Get x & y axis values
 SHIFTIN DinDout,clk,MSBPOST,[xCompass\11,yCompass\11]
 HIGH En ' Disable module
 ' Store 11-bits as signed words for both axes
 IF (yCompass.BIT10 = 1) THEN yCompass = yCompass | NegMask
 IF (xCompass.BIT10 = 1) THEN xCompass = xCompass | NegMask

 RETURN

Page 166 · Smart Sensors and Applications

Chapter 5: Accelerometer Gaming Basics · Page 167

Chapter 5: Accelerometer Gaming Basics

Chapter 3 introduced you to the Memsic Dual-Axis Accelerometer. Similar devices can
be found in lots of HIDs (Human Interface Devices), a category which includes computer
mice, keyboards, and more generally, anything that makes it possible for humans to
interact with microprocessors. With limited space on PDAs (Personal Digital Assistants)
like the one in Figure 5-1, tilt control eliminates the need for extra buttons. In this
example, tilting allows the user to pan around on a map without pushing any buttons. Tilt
control is also a popular feature in certain game controllers.

Figure 5-1:Tilt-Controlled PDA

Photos of RotoView® tilt-controlled PDA interface in action courtesy of Innoventions®,
www.innoventions.com

This chapter has four activities that demonstrate the various facets of using tilt to control
a display. Here are summaries of each activity:

• Activity #1: PBASIC Graphic Character Display – introduces some Debug
Terminal cursor control and coordinate-plotting basics.

• Activity #2: Background Store and Refresh with EEPROM – Each time your
game character moves, whatever it was covering up on the screen has to be re-
drawn. This activity demonstrates how you can move your character and refresh
the background with the help of the BASIC Stamp’s EEPROM.

• Activity #3: Tilt the Bubble Graph – With a moving asterisk on a graph, this
first application illustrates how the hot air pocket inside the MX2125 moves
when you tilt it. At the same time, it puts the accelerometer fundamentals to
work along with the techniques from Activity #2.

Page 168 · Smart Sensors and Applications

• Activity #4: Game Control – You are now ready to use tilt to start controlling
your game character. The background characters can be used to make decisions
about whether your game character is in or out of bounds. Have fun customizing
and expanding this tilt-controlled video game.

ACTIVITY #1: PBASIC GRAPHIC CHARACTER DISPLAY
This activity introduces some programming techniques you will use to graphically
display coordinates with the Debug Terminal. Certain elements of the techniques
introduced in this activity and the next will be familiar from the previous Accelerometer
and LCD chapters.

The CRSRXY and Other Control Characters

The DEBUG command's CRSRXY control character can be used to place the cursor at a
specific location on the Debug Terminal's Receive windowpane. For example, DEBUG
CRSRXY, 7, 3, "*" places the asterisk character seven spaces to the right and three
characters down. Instead of using constants like 7 and 3, you can use variables to make
the placement of the cursor adjustable. Let’s say you have two variables named x and y.
The values these variables store can control the placement of the asterisk in the command
DEBUG CRSRXY, x, y, "*".

The next example program also makes use of the CLRDN control character. The command
DEBUG CLRDN causes all the lines below the cursor’s current location to be erased.

More Control Characters

You can find out more about control characters by looking up the DEBUG command, either
in the PBASIC Syntax Guide or the BASIC Stamp Manual. You can get to the PBASIC
Syntax Guide through your BASIC Stamp Editor (v2.0 or newer). Just click Help and select
Index. The BASIC Stamp Manual is available for download from www.parallax.com.

Example Program – CrsrxyPlot.bs2

With this program, you can type pairs of digits into the Transmit windowpane as in
Figure 5-2, to position asterisks on the Receive windowpane. Simply click the Transmit
windowpane and start typing. The first digit you type is the number of spaces to the right
to place the cursor, and the second number is the number of carriage returns downward.
Before typing a new pair of digits, press the space bar once.

Chapter 5: Accelerometer Gaming Basics · Page 169

Figure 5-2: Debug Terminal Transmit and Receive Windowpanes

Transmit
Windowpane

Receive
Windowpane

√ Enter, save, and run CrsrxyPlot.bs2.
√ Resize the Debug Terminal so there is ample room to display both the plot area

and the prompts.
√ Click in the Debug Terminal's Transmit windowpane, and follow the prompts to

type digits to place asterisks on the plot.
√ Try the sequence 11, 22, 33, 43, 53, 63, 73, 84, 95. Do the asterisks in your

Debug Terminal match the pattern in Figure 5-2?
√ Try predicting the sequences for various shapes, like a square, triangle, and

circle.
√ Enter the sequences to test your predictions.
√ Correct the sequences as needed.

' Smart Sensors and Applications – CrsrxyPlot.bs2
' Type pairs of digits into the Debug Terminal to position asterisks.

'{$STAMP BS2}
'{$PBASIC 2.5}

x VAR Word
y VAR Word
temp VAR Byte

Page 170 · Smart Sensors and Applications

DEBUG CLS,
"0123456789X", CR,
"1 ", CR,
"2 ", CR,
"3 ", CR,
"4 ", CR,
"5 ", CR,
"Y ", CR, CR

DO

 DEBUG "Type X coordinate: "
 DEBUGIN DEC1 x
 DEBUG CR, "Type Y coordinate: "
 DEBUGIN DEC1 y

 DEBUG CRSRXY, x, y, "*"

 DEBUG CRSRXY, 0, 10, "Press any key..."
 DEBUGIN temp
 DEBUG CRSRXY, 0, 8, CLRDN

LOOP

Your Turn – Keeping Characters in the Plot Area

If you type the digit 8 in response to the prompt "Type Y coordinate: ", it will
overwrite your text. Similar problems occur if you type 0 for either the X or Y
coordinates. The asterisk is plotted over the text that shows which row and column
CRSRXY is plotting. One way to fix this is with the MAX and MIN operators. Simply add
the statement y = y MAX 5 MIN 1. The DEBUGIN command’s DEC1 operator solves this
problem for the maximum X coordinate, since it is limited to a value from 0 to 9. So, all
you’ll need to clamp the X value is x = x MIN 1.

√ Try entering out-of-bounds values for the Y coordinate (0 and 6 to 9) and 0 for
the X coordinate.

√ Observe the effects on the display’s background.
√ Modify CrsrxyPlot.bs2 as shown here and try it again

 DEBUG CR, "Type Y coordinate: "
 DEBUGIN DEC1 y

 Y = y MAX 5 MIN 1 ' <--- Add
 X = x MIN 1 ' <--- Add

 DEBUG CRSRXY, x, y, "*"

Chapter 5: Accelerometer Gaming Basics · Page 171

Scale and Offset

Scale and offset were introduced in Chapter 3 for managing input values from the
accelerometer. In Chapter 3, we used the ** operator for scaling (multiplying) by
fractional values. In this example, we'll just use the * operator because a variable in the
next example program only needs to be multiplied by the integer value 2.

Take a look at Figure 5-3, where a graph with both positive and negative axes has been
printed in the Debug Terminal. The horizontal, or x, axis has a space between each
numeral, and the vertical, y, axis does not. In order to position the cursor in a particular
spot using the CRSRXY command, we’ll need mapping between the axes printed in the
Debug Terminal and the axes used by the CRSRXY command.

Figure 5-3: Entering and Displaying Coordinates

Page 172 · Smart Sensors and Applications

For example, where the axes of the graph intersect at coordinates (0, 0) is actually
CRSRXY position 6,3. (Compare this with Figure 5-2 until you see how this is so.) For this
program we would like to be able to type “-3-3” in to the Debug Terminal and have the
asterisk appear at graph coordinate (-3, -3), which would be CRSRXY position 0,6. As
another example, when you type in 2,2, CRSRXY actually needs to position the asterisk at
10,1. Now, it’s time to figure out how to do this mapping translation using scale and
offset.

For values ranging from -3 to 3, the X value has to be multiplied by 2 and added to 6 for
CRSRXY to place the asterisk the right number of spaces over. That’s a scale of 2, and an
offset of 6. Here is a PBASIC statement to make the conversion from X coordinate to
number of spaces.

x = (x * 2) + 6

The Y value has to be multiplied by -1, then added to 3. That’s a scale of -1 and an offset
of 3. Here is a PBASIC statement to make the conversion from Y coordinate to number
of carriage returns.

y = 3 - y

√ Try substituting X and Y coordinates in the right side of each of these equations,

do the math, and verify that each equation yields the right number of spaces and
carriage returns.

Example Program – PlotXYGraph.bs2

√ Enter and run PlotXYGraph.bs2.
√ Try entering the sequence of values: -3-3, -2-2, -1-1, 00, 11, 22, 33, and verify

that it matches the Debug Terminal example in Figure 5-3.
√ Try some other sequences and/or drawing shapes by their coordinates.

' Smart Sensors and Applications – PlotXYGraph.bs2
' Position cursor on plot interactively in Debug Terminal

'{$STAMP BS2}
'{$PBASIC 2.5}

x VAR Word
y VAR Word
temp VAR Byte

Chapter 5: Accelerometer Gaming Basics · Page 173

DEBUG CLS,
" 3| ", CR,
" 2| ", CR,
" 1| ", CR,
"------+------", CR,
"-3-2-1| 1 2 3", CR,
" -2| ", CR,
" -3| ", CR, CR

DO

 DEBUG "Type X coordinate: "
 DEBUGIN SDEC1 x
 DEBUG CR, "Type Y coordinate: "
 DEBUGIN SDEC1 y

 x = (x * 2) + 6
 y = 3 - y

 DEBUG CRSRXY, x, y, "*"

 DEBUG CRSRXY, 0, 10, "Press any Key..."
 DEBUGIN temp
 DEBUG CRSRXY, 0, 8, CLRDN

LOOP

Your Turn – More Keeping Characters in the Plot Area

The MAX and MIN operators were introduced earlier to prevent the asterisk from appearing
outside the display area. You can also use IF…THEN statements to handle values that are
out of bounds. Here is an example of how you can modify PlotXYGraph.bs2 with
IF…THEN. Instead of clipping the values and placing the asterisk within the allowed
boundaries, this program just waits until a correct value is entered.

Modify PlotXYGraph.bs2 by replacing the DEBUG CRSRXY, x, y, "*" instruction with

the IF...THEN...ELSE...ENDIF block shown below, and then run it.

x = (x * 2) + 6
y = 3 – y

IF (x > 12) OR (y > 6) THEN ' <--- Add code from here...
 DEBUG CRSRXY, 0, 8, CLRDN, '
 "Enter values from -3 to 3.", CR, '
 "Try again" '
 '
ELSE '
 '

Page 174 · Smart Sensors and Applications

DEBUG CRSRXY, x, y, "*"
 '
ENDIF ' <--- to here

DEBUG CRSRXY, 0, 10, "Press any Key..."
DEBUGIN temp

√ Verify that this program does not allow you to enter characters outside the range
of -3 to 3.

What about negative numbers?

The conditions for the IF...THEN statement in your modified version of PlotXYGraph.bs2
are (x > 12) OR (y > 6). This covers positive numbers that are larger than 12 or 6, but it also
covers all negative numbers. That's because the BASIC Stamp uses a system called two’s
complement to store negative numbers. In two’s complement, the unsigned version of any
negative value is larger than any positive value. For example, -1 is 65535, -2 is 65534, and
so on, down to -32768, which is actually 32768. Signed positive values only range from 1 to
32767.

Algebra to Determine Scale and Offset

The XY plot displayed in the Debug Terminal in this activity is called the Cartesian
coordinate system. Named after 17th century mathematician René Descartes, this system
is the basis for graphing techniques used in many mathematical pursuits. Shown in
Figure 5-4a, the Cartesian coordinate system is most commonly displayed with (0, 0) in
the center of the graph. Its values get larger going upward (y-axis) and to the right (x-
axis). Many displays behave differently, with coordinate 0, 0 starting at the top-left as in
Figure 5-4b. While the x-axis increases toward the right, the y-axis increases downward.

Figure 5-4: Cartesian vs. Display Coordinates

 a. Cartesian Coordinates b. Display Coordinates

Chapter 5: Accelerometer Gaming Basics · Page 175

You can use a standard algebra technique, solving two equations in two unknowns, to
figure out the statements you will need to transform Cartesian coordinates into display
coordinates for the Debug Terminal. This next example shows how it was done for the
statements that converted x and y from Cartesian to display coordinates in
PlotXYGraph.bs2.

By adding a couple of DEBUG commands to PlotXYGraph.bs2, you can display the before
and after versions of the X-value you entered.

 DEBUG "Type X coordinate: "
 DEBUGIN SDEC1 x
 DEBUG CR, "Type Y coordinate: "
 DEBUGIN SDEC1 y

 DEBUG CRSRXY, 0, 12, "x before: ", SDEC x ' <--- Add

 x = (x * 2) + 6
 y = 3 - y

 DEBUG CRSRXY, 0, 14, "x after: ", SDEC x ' <--- Add

 DEBUG CRSRXY, x, y, "*"

√ Save PlotXyGraph.bs2 under another name, like PlotXyGraphBeforeAfter.bs2.
√ Add the two DEBUG commands that display the "before" and "after" values of x.
√ Add two more DEBUG commands to display the “before” and “after” values of y.
√ Enter the coordinates (3,1) and (-2,-2) into the Debug Terminal's Transmit

windowpane. See Figure 5-5.
√ Record the After values in Table 5-1.

Table 5-1: X Values Before and After

Coordinates Before After

(3, 1) 3

(-2, -2) -2

Page 176 · Smart Sensors and Applications

Figure 5-5
Test Coordinates

When designing a display to show Cartesian coordinates, it helps to take a couple of
before and after values like the ones in Table 5-1. You can then use them to solve for
scale (K) and offset (C) using two equations with two unknowns.

() CXKX beforeafter +×=

The usual steps for two equations in two unknowns are:

(1) Substitute your two before and after data points into separate copies of the equation.

() C3K12 +×=

() C2K2 +−×=

Chapter 5: Accelerometer Gaming Basics · Page 177

(2) If needed, multiply one of the two equations by a term that causes the number of one
of the unknowns in the top and bottom equations to be equal.

1. is equationsbothinC oft coefficienthebecause needed,Not

(3) Subtract one equation from the other to make one of the unknowns zero.

 []
5K10

C2)(K 2
C3)(K12

×=

+×=−
+×=

-

(4) Solve for the unknown that did not subtract to zero.

2 K
5
10K

5K10

=

=

×=

(5) Substitute the value you solved in step 4 into one of the original two equations.

() C3212 +×=

(6) Solve for the second unknown.

()

6C
612C
C612

C3212

=
=

+=
+×=

-

(7) Incorporate solved unknowns into your equation.

()

() 6X2X
6Cand2K

CXKX

beforeafter

beforeafter

+×=
==

+×=

Page 178 · Smart Sensors and Applications

Your Turn – Y-Axis Calculations

√ Modify your program so that it displays the Y-Axis before and after values.
√ Fill in Table 5-2 for the Y-axis values:

Table 5-2: Y Values Before and After

Coordinates Before After

(3, 1) 1

(-2, -2) -2

Figure 5-6
Test Coordinates

√ Repeat steps 1 through 7 for the Y-Axis equation. The correct answer is:

() 3y1y beforeafter +×−=

Chapter 5: Accelerometer Gaming Basics · Page 179

ACTIVITY #2: BACKGROUND STORE AND REFRESH WITH EEPROM
In a video game, when your game character isn’t on the screen, all that’s visible is the
background. As soon as your game character enters the screen, it blocks out part of the
background. When the character moves, two things have to happen: (1) the game
character has to be re-drawn at the new location, and (2) the background that the game
character was blocking out has to be re-drawn. If step 2 never happened in your program,
your screen would fill up with copies of your game character.

Televisions and CRT computer monitors refresh every pixel many times per second. The
refresh rate on televisions is around 30 Hz, and a few of the more common refresh rates
on CRTs are 60, 70, and 72 Hz. Other devices like certain LCD and LED displays hold
the image automatically, or sometimes with the help of another microcontroller. All the
program or microcontroller that controls these devices has to do is tell them what to
display or change. This is also how video compression on your computer works. In
order to reduce the file size, some compressed video files store the changes to the image
instead of all the pixels in a given image frame.

When used with displays that do not need to be refreshed (like the Debug Terminal or an
LCD), the BASIC Stamp EEPROM can store an image of a game or graph background in
its EEPROM. When a game character moves and is redrawn at a different location, the
BASIC Stamp can just read its EEPROM and redraw the background characters at the
game character’s old location. To do this, simply save the old coordinates of the game
character before it moved and then use those coordinates to retrieve the background
character from EEPROM. Depending on how large the display is, this can save a
considerable amount of time that the BASIC Stamp might need to perform other tasks.

This activity introduces three elements to game characters and backgrounds:

1. Storing and displaying the background from EEPROM
2. Tracking a character’s old and new coordinates
3. Redrawing the old coordinates from EEPROM

Background Display from EEPROM

This display doesn’t have to be made with a single DEBUG command, especially if it
needs to be maintained as a background with characters traveling over it in the
foreground. Instead, it’s better to store the characters in EEPROM and then display them

Page 180 · Smart Sensors and Applications

individually with a FOR…NEXT loop that uses READ and DEBUG commands to display
individual characters. Figure 5-7 is a display generated with this technique.

Figure 5-7
Background
from DATA Directive

You can use the DATA directive to store a background in EEPROM. Notice how this
DATA directive stores 100 characters (0 to 99). Notice also that each row is 14 characters
wide when you add the CR control character. It makes programming much easier if each
row is the same width. Otherwise, finding the character you want becomes a more
complex problem.

 DATA CLS, ' 0
 " 3| ", CR, ' 14
 " 2| ", CR, ' 28
 " 1| ", CR, ' 42
 "------+------", CR, ' 56
 "-3-2-1| 1 2 3", CR, ' 70
 " -2| ", CR, ' 84
 " -3| ", CR, CR ' 98 + 1 = 99

To display the entire background once at the beginning of the program, you can then use
a FOR…NEXT loop. It retrieves and displays each character stored in EEPROM. Keep in
mind that, while the net effect is the same as a long DEBUG command, the EEPROM is

Chapter 5: Accelerometer Gaming Basics · Page 181

more flexible because you can also fetch and display individual characters as needed to
refresh the background.

FOR index = 0 TO 99
 READ index, character
 DEBUG character
NEXT

Example Program – EepromBackgroundDisplay.bs2

√ Enter, save, and run the program.
√ Verify that the display is the same as PlotXyGraph.bs2.

' Smart Sensors and Applications - EepromBackgroundDisplay.bs2
'

'{$STAMP BS2} ' Stamp & PBASIC Directives
'{$PBASIC 2.5}

index VAR Byte ' Variables
character VAR Byte

DATA CLS, ' 0 ' Store background in EEPROM
" 3| ", CR, ' 14
" 2| ", CR, ' 28
" 1| ", CR, ' 42
"------+------", CR, ' 56
"-3-2-1| 1 2 3", CR, ' 70
" -2| ", CR, ' 84
" -3| ", CR, CR ' 98 + 1 = 99

FOR index = 0 TO 99 ' Retrieve and display background
 READ index, character
 DEBUG character
NEXT

END

Your Turn – Viewing the EEPROM Characters

√ In the BASIC Stamp Editor, click Run and select Memory Map.
√ Click the Display ASCII box in the lower left corner of the Memory Map

window.
√ The digits, dashes, and vertical bars should appear in the EEPROM Map exactly

as shown in Figure 5-8.

Page 182 · Smart Sensors and Applications

√ Instead of 14 characters per row, the EEPROM Map shows 16. Verify that you
have a total of 100 (0 to 99) characters stored for display purposes in EEPROM.

Figure 5-8: Display Characters Stored in EEPROM

Tracking a Character’s Old and New Coordinates

Let’s say you want to track the previous X and Y coordinates in the original unmodified
PlotXYGraph.bs2 from Activity #1. It takes two steps:

(1) Declare a couple of variables for storing the old values, xOld and yOld for
example.

x VAR Word
y VAR Word

xOld VAR Nib ' <--- Add
yOld VAR Nib ' <--- Add

temp VAR Byte

(2) Before loading new values into the x and y variables, store the current value of x
into xOld and the current value of y into yOld.

Chapter 5: Accelerometer Gaming Basics · Page 183

DO

 xOld = x ' <--- Add
 yOld = y ' <--- Add

 DEBUG "Type X coordinate: "

Why are x and y words while xOld and yOld are nibbles?

When working with signed values, word variables store both the value and the sign.

At the particular place that xOld and yOld are used in the program, they are only storing
values that range from 0 to 12, so all we need are nibble variables.

Here’s a third step you can use to test and verify that it works:

(3) Add DEBUG statements to display the current and previous values of x, y.

DEBUG CRSRXY, x, y, "*"

 DEBUG CRSRXY, 0, 10, ' <--- Add
 "Current entry: (",
 DEC x, ",", DEC y, ")"
 DEBUG CRSRXY, 0, 11, ' <--- Add
 "Previous entry: (",
 DEC xOld, ",", DEC yOld, ")"
 DEBUG CRSRXY, 0, 12, "Press any Key..." ' <--- Modify

 DEBUGIN temp

√ Start with the original, unmodified version of PlotXYGraph.bs2, save it under
the name PlotXYGraphRecall.bs2, and try the modifications just discussed in
steps (1) through (3) above. Keep in mind that both values displayed will be in
terms of Debug Terminal coordinates. Also keep in mind that the first time
through, the old coordinates will be (0, 0) since all variables initialize to zero in
PBASIC.

Re-Drawing the Background

Up to this point, all of our plots accumulated asterisks as we entered more values in the
Transmit windowpane. The net effect we want for game control is to make the asterisk
disappear from its old location and appear in its new location whenever we redefine it, to
give the appearance of one asterisk moving.

Page 184 · Smart Sensors and Applications

Take a look at Figure 5-9. Notice that six ordered pairs were entered into the Debug
Terminal, but there is only one asterisk, and it corresponds with the last pair that was
entered. That's because the program used here makes the old asterisk disappear by taking
the old x, y coordinates to look up the background character from EEPROM, and then
displaying it with DEBUG. To make the asterisk appear at its new location, it simply uses
a DEBUG command with the current x, y coordinates as did our previous example
programs.

Figure 5-9
Display using EEPROM
Background Refresh

The program used to create Figure 5-9 combines the DATA-defined background technique
from EepromBackgroundDisplay.bs2 with the asterisk plotting and location tracking
technique from PlotXYGraphRecall.bs2. This combination allows us to redraw the
background character over the old asterisk with this code:

IF (x <> xold) AND (y <> yold) THEN ' Check if asterisk moved
 index = (14 * yOld) + xOld + 1 ' Background character address
 READ index, character ' Get background character
 DEBUG CRSRXY, xOld, yOld, character ' Display background character
ENDIF

Chapter 5: Accelerometer Gaming Basics · Page 185

The index variable selects the correct character from EEPROM. The x value is the
number of spaces over and the y value is the number of carriage returns down. To get to
the correct address of a character on the third row, your program has to add all the
characters in the first two rows. Since each row has 14 characters, yOld has to be
multiplied by 14 before it can be added to xOld. The extra 1 is added to skip the CLS at
address 0.

Regardless of whether it's a computer display, the liquid crystal display on your cell
phone, or your BASIC Stamp application's display, the same technique applies. The
processor remembers two different images, the one in the background, and the one in the
foreground. As the foreground object “moves” it is displayed in a different location and
the area that the foreground object vacated is re-drawn.

The most important thing to keep in mind about this programming technique is that it
saves the processor lots of time. It only has to get one character from EEPROM and send
it to the Debug Terminal. Compared to 99 characters, that's a significant time savings,
and the BASIC Stamp can be doing other things with that time, such as monitoring other
sensors, controlling servos, etc.

Example Program – EepromBackgroundRefresh.bs2

This program takes PlotXYGraph.bs2 combined with EepromBackgroundDisplay.bs2,
using the background display, coordinate storage, and the background re-draw technique
just discussed.

√ Enter save and run EepromBackgroundRefresh.bs2.
√ Test and verify that the asterisk disappears from its old location and appears at

the new location you entered.

' -----[Title]---
' Smart Sensors and Applications - EepromBackgroundRefresh.bs2

'{$STAMP BS2} ' Stamp/PBASIC directives
'{$PBASIC 2.5}

' -----[Variables]---

x VAR Word ' Store current position
y VAR Word

xOld VAR Nib ' Store previous position
yOld VAR Nib

Page 186 · Smart Sensors and Applications

temp VAR Byte ' Dummy variable for DEBUGIN

index VAR Byte ' READ index/character storage
character VAR Byte

' -----[EEPROM Data]---

DATA CLS, ' Background data
" 3| ", CR, ' 14
" 2| ", CR, ' 28
" 1| ", CR, ' 42
"------+------", CR, ' 56
"-3-2-1| 1 2 3", CR, ' 70
" -2| ", CR, ' 84
" -3| ", CR, CR ' 98 + 1 = 99

' -----[Initialization]--

FOR index = 0 TO 99 ' Display background
 READ index, character
 DEBUG character
NEXT

' -----[Main Routine]--

DO

 xOld = x ' Store previous coordinates
 yOld = y

 DEBUG "Type X coordinate: " ' Get new coordinates
 DEBUGIN SDEC1 x
 DEBUG CR, "Type Y coordinate: "
 DEBUGIN SDEC1 y

 x = (x * 2) + 6 ' Cartesian to DEBUG values
 y = 3 - y

 DEBUG CRSRXY, x, y, "*" ' Display asterisk

 IF (x <> xold) AND (y <> yold) THEN ' Check if asterisk moved
 index = (14 * yOld) + xOld + 1 ' Background character address
 READ index, character ' Get background character
 DEBUG CRSRXY, xOld, yOld, character ' Display background character
 ENDIF

 DEBUG CRSRXY, 0, 10, "Press any Key..." ' Wait for user
 DEBUGIN temp
 DEBUG CRSRXY, 0, 8, CLRDN ' Clear old info

LOOP

Chapter 5: Accelerometer Gaming Basics · Page 187

Your Turn - Redrawing the Background without Extra Variables

Keeping track of the old location of the foreground character isn’t always necessary.
Think about it this way: in EepromBackgroundRefresh.bs2 the x and y variables store the
old values until you enter new values. By simply rearranging the order in which the x
and y variables are displayed, you can eliminate the need for xOld and yOld.

Next is a replacement Main Routine you can try in EepromBackgroundRefresh.bs2. As
soon as you press the space bar, your old asterisk disappears. The new asterisk reappears
when you type the second of the two coordinates. As you will see in the next activity,
this technique works really well when the refresh rate is several times per second with tilt
control.

√ Save EepromBackgroundRefresh.bs2 as
EepromBackgroundRefreshYourTurn.bs2.

√ Comment out the xOld and yOld variable declarations.
√ Replace the Main Routine in EepromBackgroundRefresh.bs2 with this one.
√ Test it and examine the change in the program’s behavior.

' -----[Main Routine]--

DO

 index = (14 * y) + x + 1 ' Redisplay background
 READ index, character
 DEBUG CRSRXY, x, y, character

 DEBUG CRSRXY, 0, 8, ' Get new coordinates
 "Type X coordinate: "
 DEBUGIN SDEC1 x
 DEBUG CR, "Type Y coordinate: "
 DEBUGIN SDEC1 y

 x = (x * 2) + 6 ' Cartesian to DEBUG values
 y = 3 - y

 DEBUG CRSRXY, x, y, "*" ' Display asterisk

 DEBUG CRSRXY, 0, 10, "Press any Key..." ' Wait for user
 DEBUGIN temp
 DEBUG CRSRXY, 0, 8, CLRDN ' Clear old info

LOOP

Page 188 · Smart Sensors and Applications

Animation and Redrawing the Background

Here is an example of something you can do if you use individual characters, but it won't
work if you try to redraw the entire display with a DEBUG command.

√ Save EepromBackgroundRefresh.bs2 as ExampleAnimation.bs2.
√ Replace the Main Routine in the program with the one shown here.
√ Run it and observe the effect.

DO
 FOR y = 0 TO 6
 FOR temp = 1 TO 2
 FOR x = 0 TO 12
 IF (temp.BIT0 = 1) THEN
 DEBUG CRSRXY, x, y, "*"
 ELSE
 index = (14 * yOld) + xOld + 1
 READ index, character
 DEBUG CRSRXY, xOld, yOld, character
 xOld = x
 yOld = y
 ENDIF
 PAUSE 50
 NEXT
 NEXT
 NEXT
LOOP

ACTIVITY #3: TILT THE BUBBLE GRAPH
This activity combines the graphics concepts introduced in Activities #1 and #2 with the
accelerometer tilt measurement techniques introduced in Chapter 3. The result is an
asterisk “bubble” that illustrates the movement of the heated gas pocket inside the
MX2125’s chamber. Figure 5-11 on the next page shows what the Debug Terminal in
this activity displays when the accelerometer is tilted up and to the left.

Parts Required

 (2) 3-inch Jumper Wires
 (2) Resistors – 220 Ω
 (1) Memsic MX2125 Dual-Axis Accelerometer

√ Connect the accelerometer module using Figure 5-10 as your guide.

Chapter 5: Accelerometer Gaming Basics · Page 189

Figure 5-10: Accelerometer Schematic and Wiring Diagram

Figure 5-11: Accelerometer Hot Gas Location

 Asterisk Indicates
Hot Gas Location

Page 190 · Smart Sensors and Applications

Figure 5-12 shows a legend for the different ways you can tilt the board on its axes along
with each tilt’s effect on the location of the hot gas pocket.

Level

Tilt
Right

Tilt
Left

Tilt
Down

Tilt
Up

Tilt

Hot Gas Center

(0, 0)

(-3, 0)

(3, 0)

(0, -3)

(0, 3)

Figure 5-12:
Accelerometer
Tilt and Cursor
Location

Chapter 5: Accelerometer Gaming Basics · Page 191

Tilt Control of Asterisk Display

BubbleGraph.bs2 updates the position of the hottest spot inside the accelerometer
chamber about 8 times per second (8 Hz). After displaying the background (X and Y
axes) to the Debug Terminal, it repeats the same steps over and over again.

• Replace the asterisk with the background character and pause for the blink-
effect.

• Get the X-axis tilt from the accelerometer.
• Get the Y-axis tilt from the accelerometer.
• Adjust the value so that it fits on the plot’s X-axis.
• Adjust the value so that it fits on the plot’s Y-axis.
• Display the asterisk and pause again for the blink-effect.

Each of these steps is discussed in more detail in the section that follows the example
program.

Example Program – BubbleGraph.bs2

√ Enter and run BubbleGraph.bs2.

' -----[Title]--
' Smart Sensors and Applications - BubbleGraph.bs2
' Position of bubble in tilt sensor displays on graph in Debug Terminal

'{$STAMP BS2} ' Stamp/PBASIC directives
'{$PBASIC 2.5}

' -----[EEPROM Data]--

' Store background to EEPROM ' Address of last char on row

DATA CLS, ' 0
" 5^Y ", CR, ' 22
" 4| ", CR, ' 44
" 3| ", CR, ' 66
" 2| ", CR, ' 88
" 1| X", CR, ' 110
"----------+--------->", CR, ' 132
"-5-4-3-2-1| 1 2 3 4 5", CR, ' 154
" -2| ", CR, ' 176
" -3| ", CR, ' 198
" -4| ", CR, ' 220
" -5| ", CR ' 242

Page 192 · Smart Sensors and Applications

' -----[Variables]--

x VAR Word ' Store current position
y VAR Word

index VAR Word ' READ index/character storage
char VAR Byte

' -----[Initialization]---

FOR index = 0 TO 242 ' Read & display background
 READ index, char
 DEBUG char
NEXT

' -----[Main Routine]---
DO ' Begin main routine

 ' Replace asterisk with background character.
 index = (22 * y) + x + 1 ' Coordinates -> EEPROM address
 READ index, char ' Get background character
 DEBUG CRSRXY, x, y, char ' Display background character
 PAUSE 50 ' Pause for blink effect

 ' Measure tilt.
 PULSIN 6, 1, x ' Get Ax and Ay
 PULSIN 7, 1, y

 ' Calculate cursor position.
 x = (x MIN 1875 MAX 3125) - 1875 ** 1101 ' Calculate x position
 y = (y MIN 1875 MAX 3125) - 1875 ** 576 ' Calculate y position
 y = 10 - y

 ' Display asterisk at new cursor position.
 DEBUG CRSRXY, x, y, "*" ' Display asterisk
 PAUSE 50 ' Pause again for blink effect

LOOP ' Repeat main routine

√ Hold your board as shown in the top of Figure 5-12.
√ Practice controlling the asterisk by tilting the board.
√ Aside from holding your board horizontally and tilting it, try holding it vertically

and rotating it in a circle. The asterisk should travel in a circular arc around the
graph as you do so.

Chapter 5: Accelerometer Gaming Basics · Page 193

How BubbleGraph.bs2 Works

The first thing the Main Routine does is display the background character at the current
cursor position. With a 50 ms pause, it completes the “off” portion of a blinking asterisk.

 ' Replace asterisk with background character.
 index = (22 * y) + x + 1 ' Coordinates -> EEPROM address
 READ index, char ' Get background character
 DEBUG CRSRXY, x, y, char ' Display background character
 PAUSE 50 ' Pause for blink effect

Next, the program acquires the x and y tilt.

 ' Measure tilt.
 PULSIN 6, 1, x ' Get Ax and Ay
 PULSIN 7, 1, y

The program needs to scale and offset the x and y-axis tilt measurements so that the
asterisk is correctly placed in the Debug Terminal. The same scaling and offset
introduced in Chapter 3, Activity #3 works for this task. For the x-axis, the
accelerometer’s pulse values of 1875 to 3125 have to be scaled to asterisk placements of
0 to 20. By subtracting 1875 from the accelerometer measurement before scaling, we
have an input scale of 0 to 1250 (1251 elements) and an output scale of 0 to 20 (21
elements). The equation for calculating the ** scale constant is:

ScaleConstant = Int[65536(output scale elements)/(input scale elements - 1)]

Substituting the number of elements in the input and output scales gives us a ** scale
constant of 1101.

ScaleConstant = Int[65536(21/(1251-1))]
ScaleConstant = Int[65536(21/1250)]
ScaleConstant = Int[1101.0048]
ScaleConstant = 1101

A similar process results in a ** scale constant of 576 for the y-axis, and the resulting
code for scale and offset for both axes is:

 ' Calculate cursor position.
 x = (x MIN 1875 MAX 3125) - 1875 ** 1101 ' Calculate x position
 y = (y MIN 1875 MAX 3125) - 1875 ** 576 ' Calculate y position
 y = 10 - y

Page 194 · Smart Sensors and Applications

If the accelerometer measurements are slightly outside the 1875 to 3125 scale, it can
cause strange display symptoms. The MIN and MAX operators prevent this problem. Also,
1875 is subtracted from each axis before it is scaled with the ** operator. The result for
the x-axis is 0 to 1250 is scaled to 0 to 20. For the y-axis, 0 to 1250 is scaled to 0 to 10.

As the y-axis tilt measurements decrease, the downward position of the cursor has to
increase. So instead of fitting 1875 to 3125 into 0 to 10, the program has to fit it into 10
to 0 instead. The statement y = 10 - y solves this. If y is 0 after scaling, it becomes
10. Likewise if y is 10 after scaling it becomes 0. If it's 9 after scaling it becomes 1, if
it's 8 after scaling, it becomes 2, and so on.

The last steps before repeating the loop in the Main Routine is to display the new asterisk
at its new x and y coordinates, then pause for another 50 ms to complete the “on” portion
of the blinking asterisk.

' Display asterisk at new cursor position.
DEBUG CRSRXY, x, y, "*"
PAUSE 50

Your Turn – A Larger Bubble

Displaying and erasing a group of asterisks like the one shown in Figure 5-13 can be
done, but compared to a single character, it’s a little tricky. The program has to ensure
that none of the asterisks will be displayed outside the plot area. It also has to ensure that
all of the asterisks will be overwritten with the correct characters from EEPROM. Here
is one example of how to modify BubbleGraph.bs2 so that it displays a 5-asterisk
coordinate indicator:

√ Save BubbleGraph.bs2 as BubbleGraphYourTurn.bs2.
√ Add this variable declaration to the program’s Variables section:

temp VAR Byte

√ Replace the “Replace asterisk with background character” routine with this:

' Replace asterisk with background character (modified).
FOR temp = (x MIN 1 – 1) TO (x MAX 19 + 1)
 index = (22 * y) + temp + 1
 READ index, char
 DEBUG CRSRXY, temp, y, char
NEXT

Chapter 5: Accelerometer Gaming Basics · Page 195

FOR temp = (y MIN 1 – 1) TO (y MAX 9 + 1)
 index = (22 * temp) + x + 1
 READ index, char
 DEBUG CRSRXY, x, temp, char
NEXT
PAUSE 50

√ Replace the “ Display asterisk at new cursor position” routine with this:

' Display asterisk at new cursor position (modified).
DEBUG CRSRXY, x, y, "*",
 CRSRXY, x MAX 19 + 1, y, "*",
 CRSRXY, x, y MAX 9 + 1, "*",
 CRSRXY, x MIN 1 - 1, y, "*",
 CRSRXY, x, y MIN 1 - 1, "*"
PAUSE 50

√ Run the program and try it. Test to make sure problems do not occur as one of
the outermost asterisks is forced off the plot area.

Figure 5-13
Group of Asterisks
with Background
Refresh

Page 196 · Smart Sensors and Applications

MIN and Negative Numbers

A two’s complement "gotcha" to avoid is subtracting 1 from 0 and then setting the MIN value
afterwards. Remember from Chapter 3 that the two’s complement system stores the signed
value -1 as 65535. That’s why the MIN value was set to 1 before subtracting 1. The result is
then a correct minimum of 0. The same technique was used for setting the MAX values
even though there really isn’t a problem with y + 1 MAX 10.

ACTIVITY #4: GAME CONTROL
Here are the rules of this Activity's tilt-controlled game example, shown in Figure 12.
Tilt your board to control the asterisk. If you get through the maze and place the asterisk
on any of the "WIN" characters, the "YOU WIN" screen will display. If you bump into
any of the pound signs "#" before you get to the end of the maze, the "YOU LOSE"
screen is displayed. As you navigate the maze, try to move your asterisk game character
through the dollar signs "$" to get more points.

Converting BubbleGraph.bs2 into TiltObstacleGame.bs2

TiltObstacleGame.bs2 is inarguably a hopped-up version of BubbleGraph.bs2. Here is a
list of the main changes and additions:

• Change the graph into a maze.
• Add two backgrounds for win and lose to the EEPROM data.
• Give each background a Symbol name.
• Write a game player code block that detects which background character the

game character is in front of and uses that information to enforce the rules of the
game.

Chapter 5: Accelerometer Gaming Basics · Page 197

Figure 5-14: Obstacle Course Game

Game Maze background (left)
“You Win” Display (below left)
“You Lose Display (below right)

Page 198 · Smart Sensors and Applications

Try the game first, and then we’ll take a closer look at how it works.

Example Program – TiltObstacleGame.bs2

Free Download! This program is available as a free .bs2 file download from the Smart
Sensors and Applications Product Page at www.parallax.com.

√ Open (or enter) and save TiltObstacleGame.bs2.
√ Before you run the program, make sure your board is level. Also, make sure you

are holding it the same way you did in Activity 3, with the breadboard closest to
you, and the serial cable furthest away.

√ If you want to refresh the “$” characters, click your BASIC Stamp Editor’s Run
button. If you want to just practice navigating and not worry about points, press
and release the Reset button on your board.

' -----[Title]--
' Smart Sensors and Applications - TiltObstacleGame.bs2
' Tilt accelerometer to guide cursor through maze, collect $ in Debug Terminal

'{$STAMP BS2} ' Stamp/PBASIC directives
'{$PBASIC 2.5}

' -----[EEPROM Data]--
' Store background to EEPROM ' 3 backgrounds used in game

Maze DATA @0, HOME, ' Maze background
"#####################", CR,
"###### $ ########", CR,
"## ### ###", CR,
"# ########### ###", CR,
"#$ # ####", CR,
"##### # $ #####WIN", CR,
"# ## ## $ #", CR,
"# $ ########### # #", CR,
"# ##$## # #", CR,
"# ######## #", CR,
"#####################", CR

YouLose DATA @243, HOME, ' YouLose background
"#####################", CR,
"#####################", CR,
"### ####### ####", CR,
"### ####### ####", CR,
"#####################", CR,
"########## ##########", CR,

Chapter 5: Accelerometer Gaming Basics · Page 199

"#####################", CR,
"### ####", CR,
"### YOU LOSE ####", CR,
"### ####", CR,
"#####################", CR

YouWin DATA @486, HOME, ' YouWin background
" ########### ", CR,
" ################# ", CR,
"##### ##### #####", CR,
"#### ### ####", CR,
"# ### ##### ### #", CR,
"# ############### #", CR,
"## ########### ##", CR,
"## ##", CR,
" #### YOU WIN #### ", CR,
" #### #### ", CR,
" ######### ", CR

' -----[Variables]--
x VAR Word ' x & y tilts & graph coordinates
y VAR Word

index VAR Word ' EEPROM address and character
char VAR Byte

symbol VAR Word ' Symbol address for EEPROM DATA
points VAR Byte ' Points during game

' -----[Initialization]---
x = 10 ' Start game character in middle
y = 5

DEBUG CLS ' Clear screen

' Display maze.
symbol = Maze ' Set Symbol to Maze EEPROM DATA

FOR index = 0 TO 242 ' Display maze
 READ index + symbol, char
 DEBUG char
NEXT

' -----[Main Routine]---
DO

 ' Display background at cursor position.
 index = (22 * y) + x + 1 ' Coordinates -> EEPROM address
 READ index + symbol, char ' Get background character
 DEBUG CRSRXY, x, y, char ' Display background character
 PAUSE 50 ' Pause for blink effect

Page 200 · Smart Sensors and Applications

 ' Measure tilt and calculate cursor position.
 PULSIN 6, 1, x ' Get Ax and Ay
 PULSIN 7, 1, y

 x = (x MIN 1875 MAX 3125) - 1875 ** 1101 ' Calculate x position
 y = (y MIN 1875 MAX 3125) - 1875 ** 576 ' Calculate y position
 y = 10 - y

 ' Display asterisk at new position.
 DEBUG CRSRXY, x, y, "*" ' Display asterisk
 PAUSE 50 ' Pause again for blink effect

 ' Display score
 DEBUG CRSRXY, 0, 11, ' Display points
 "Score: ", DEC3 points

 ' Did you move the asterisk over a $, W, I, N, or #?
 SELECT char ' Check background character
 CASE "$" ' If "$"
 points = points + 10 ' Add points
 WRITE index, "%" ' Write "%" over "$"
 CASE "#" ' If "#", set Symbol to YouLose
 symbol = YouLose
 CASE "W", "I", "N" ' If W,I,orN, Symbol -> YouWin
 symbol = YouWin
 ENDSELECT

 ' This routine gets skipped while symbol is still = Maze. If symbol
 ' was changed to YouWin or YouLose, display new background and end game.
 IF (symbol = YouWin) OR (symbol = YouLose) THEN
 FOR index = 0 TO 242 ' 242 characters
 READ index + symbol, char ' Get character
 DEBUG char ' Display character
 NEXT ' Next iteration of loop
 END ' End game
 ENDIF ' End symbol-if code block

LOOP ' Repeat main loop

How it Works – From BubbleGraph.bs2 to TiltObstacleGame.bs2

Two of the DATA directive’s optional features were used here. Each of the three
backgrounds was given a Symbol name, Maze, YouWin, and YouLose. These Symbol
names make it easy for the program to select which background to display. The optional
@Address operator was also used to set each directive’s beginning EEPROM address. In
BubbleGraph.bs2’s background, the first character is CLS to clear the screen. The
problem with CLS in these DATA directives is that it erases the entire Debug Terminal,

Chapter 5: Accelerometer Gaming Basics · Page 201

including the score, which is displayed below the background. By substituting HOME for
CLS, the entire backgrounds can be drawn and redrawn without erasing the score.

Maze DATA @0, HOME,
"#####################", CR,
"###### $ ########", CR,
 ·
 ·
 ·
YouLose DATA @243, HOME,
"#####################", CR,
"#####################", CR,
 ·
 ·
 ·
YouWin DATA @486, HOME,
" ########### ", CR,
" ################# ", CR,
 ·
 ·

Verifying Symbol Values

You can also try commands like DEBUG DEC YouWin to verify YouWin stores the value 486.

Two variables are added, symbol to keep track of which background to retrieve
characters from, and points to keep track of the player’s score.

symbol VAR Word
points VAR Byte

The initial values of x and y have to start in the middle of the obstacle course. Since all
variables initialize to zero in PBASIC, failure to initialize them would cause the game
character to start in the top-left corner, instead of in the middle.

x = 10
y = 5

The symbol variable is set to Maze before executing the FOR…NEXT loop that displays the
background. Since all variables are initialized to zero in PBASIC, this happens anyhow.
However, if you were to insert a DATA directive before the Maze background, it would be
crucial to have this statement.

' Display maze.
symbol = Maze

Page 202 · Smart Sensors and Applications

The code block that follows the variable initialization is the background display. Look
carefully at the READ command. It has been changed from READ index, char to READ
index + symbol, char. Since the symbol variable was set to store Maze, all the
characters in the first background will be displayed. If symbol stored YouLose, all the
characters in the second background would be displayed. If it stored YouWin, all the
characters in the third background would be displayed. Since either "You Lose" or "You
Win" will have to be displayed, this routine will be used again later in the program.

FOR index = 0 TO 242
 READ index + symbol, char
 DEBUG char
NEXT

Three routines have to be added to the DO...LOOP in the Main Routine. The first simply
displays the player’s score:

' Display score
DEBUG CRSRXY, 0, 11, ' Display points
"Score: ", DEC3 points

The second routine is crucial; it’s a SELECT…CASE statement that enforces the rules of the
game. The SELECT…CASE statement looks at the background character at the asterisk’s
current location. If the asterisk is over a space " ", the SELECT…CASE statement doesn’t
need to change anything, so the Main Routine’s DO…LOOP just keeps on repeating itself,
checking the accelerometer measurements and updating the asterisk’s location. If the
asterisk is moved over a "$", the program has to add 10 to the points variable, and write
a "%" character over the "$" in EEPROM. This prevents the program from adding 10
points several times per second while the asterisk is held over the "$". If the asterisk is
moved over a "#", the YouLose symbol is stored in the symbol variable. If the asterisk
moves over any one of the "W" "I" or "N" letters, YouWin is stored in symbol.

' Did you move the asterisk over a $, W, I, N, or #?
SELECT char ' Check background character
 CASE "$" ' If "$"
 points = points + 10 ' Add points
 WRITE index, "%" ' Write "%" over "$"
 CASE "#" ' If "#", set Symbol to YouLose
 symbol = YouLose
 CASE "W", "I", "N" ' If W,I,orN, Symbol -> YouWin
 symbol = YouWin
 ENDSELECT

Chapter 5: Accelerometer Gaming Basics · Page 203

As you’re navigating your asterisk over " ", "$", or "%", this next routine gets skipped
because symbol still stores Maze. The SELECT…CASE statement only changes that when
the asterisk was moved over "#", "W", "I", or "N". Whenever the SELECT…CASE
statement changes symbol to either YouWin or YouLose, this routine displays the
corresponding background, then ends the game.

' This routine gets skipped while symbol is still = Maze. If symbol
' was changed to YouWin or YouLose, display new background & end game.
 IF (symbol = YouWin) OR (symbol = YouLose) THEN
 FOR index = 0 TO 242 ' 242 characters
 READ index + symbol, char ' Get character
 DEBUG char ' Display character
 NEXT ' Next iteration of loop
 END ' End game
 ENDIF ' End symbol-if code block

Your Turn – Modifications and Bug Fixes

The game doesn't refresh the "$" symbols when you re-run it with the Board of
Education's Reset button. It only works when you click the Run button on the BASIC
Stamp Editor. That's because the DATA directive only writes to the EEPROM when the
program is downloaded. If the program is restarted with the Reset button, the BASIC
Stamp Editor doesn't get the chance to store the spaces, dollar signs, etc, so the percent
signs that were written to EEPROM are still there. To fix the problem, all you have to do
is check each character that gets read from EEPROM during the initialization. If that
character turns out to be a "%", use the WRITE command to change it back to a "$".

√ Save TiltObstacleGame.bs2 as TiltObstacleGameYourTurn.bs2
√ Modify the FOR...NEXT loop in the initialization that displays the maze like this:

FOR index = 0 TO 242 ' Display maze
 READ index + symbol, char
 IF(char = "%") THEN ' <--- Add
 char = "$" ' <--- Add
 WRITE index + symbol, char ' <--- Add
 ENDIF ' <--- Add
 DEBUG char
NEXT

√ Verify that both the BASIC Stamp Editor's Run button and the Board of
Education's Reset button behave the same after this modification.

Page 204 · Smart Sensors and Applications

If the player rapidly changes the board's tilt, it is possible to jump over the "#" walls.
There are two ways to fix this. One would be to add jumping animation and call it a
"feature". Another way to fix it would be to only allow the asterisk to move by 1
character in either the X or Y directions. To fix this, the program will need to keep track
of the previous position. This is a job for the xOld and yOld variables introduced in
Activity #2.

√ Add these variable declarations to the Variables section in
TiltObstacleGameYourTurn.bs2:

x VAR Word ' x & y tilts & coordinates
y VAR Word

xOld VAR Word ' <--- Add
yOld VAR Word ' <--- Add

√ Add initialization statements for xOld and yOld.

x = 10 ' Start game char in middle
xOld = 10 ' <--- Add
y = 5
yOld = 5 ' <--- Add

√ Modify the Main Routine so that x can only be greater than or less than xOld
by an increment or decrement of 1. Repeat for y and yOld.

y = 10 - y ' Offset Cartesian -> Debug

IF (x > xOld) THEN x = xOld MAX 19 + 1 ' <--- Add
IF (x < xOld) THEN x = xOld MIN 1 - 1 ' <--- Add

IF (y > yOld) THEN y = yOld MAX 9 + 1 ' <--- Add
IF (y < yOld) THEN y = yOld MIN 1 - 1 ' <--- Add

' Display asterisk at new position.
DEBUG CRSRXY, x, y, "*" ' Display asterisk
PAUSE 50 ' Pause again for blink effect

xOld = x ' <--- Add
yOld = y ' <--- Add

' Display score

√ Run and test your modified program and verify that the asterisk can no longer
skip "#" walls.

Chapter 5: Accelerometer Gaming Basics · Page 205

SUMMARY
Activity #1 introduced control characters, techniques for keeping characters inside a
display’s boundaries, and algebra for mapping coordinates to a display. Control character
examples included CRSRXY and CLRDN. Display boundary examples included the MIN and
MAX operators and an IF…THEN technique. Mapping techniques included simple PBASIC
equations to change the values of X and Y coordinates from Cartesian to their Debug
Terminal equivalents.

Activity #2 introduced a means of storing, displaying and refreshing a background
character display image from EEPROM. This is a useful ingredient for many product
displays, and will also come in handy for tilt display and games. An entire display
background can be printed with a FOR…NEXT loop. A READ command in the loop depends
on the FOR…NEXT loop’s index variable to address the next character in the sequence.
After the READ command loads the next character in the variable, the DEBUG command
can be used to send the character to the Debug Terminal. For erasing the tracks left by a
character moving over the background, the character’s previous position can be stored in
one or more variables. The previous position information is then used along with the
READ command to look up the character that should replace the moving character after it
has moved to its next position.

Activity #3 demonstrated how the accelerometer measurements from Chapter 3 can be
combined with cursor positioning and character recall techniques from Activity #2 to
create a tilt-controlled display. Simple PULSIN measurements were used to measure the
accelerometer’s x and y-axis tilt. The tilt values were then scaled and offset using
techniques introduced in Chapter 3, Activity #3. The modified x and y values dictated
cursor placement for printing the asterisk in the Debug Terminal. The asterisk's position
relative to the Cartesian plane displayed in the background represented the center of the
hot air pocket inside the MX2125's chamber. As the asterisk moved, the background of
its previous location was redrawn using techniques introduced in Activity #2.

Activity #4 introduced tilt-mode game control. The rules of simple games can be
implemented with SELECT...CASE statements that use the character in the background at
the location of the game character to decide what action to take next. Multiple
backgrounds can be incorporated into a game by making use of the DATA directive's
optional @Address operator and Symbol name. Since the Symbol name is actually the
EEPROM address at the beginning of a given DATA directive, your program can access

Page 206 · Smart Sensors and Applications

elements in different backgrounds by adding the value of Symbol to the READ command's
Address argument.

Questions

1. What does HID stand for?
2. What control character causes all the lines below the cursor's current location to

be erased?
3. What command and formatter can you use to store a single digit that you type

into the Debug Terminal’s Transmit windowpane in the X variable?
4. Are there other coding techniques you can use with other operators to prevent

the value a variable stores from exceeding a maximum or minimum value?
5. What are the refresh rates of common CRT computer monitors?
6. What kind of routine do you need to display all the background characters stored

in a DATA directive?
7. Why are word variables necessary for storing signed values in PBASIC?
8. When you tilt the accelerometer to the left, which way does the asterisk bubble

travel?
9. If the coordinates of the asterisk started at (-5, 0), and ended at (5, 0), what do

you think happened to the accelerometer?
10. Which axis was the fulcrum if the accelerometer started at (2, 2) and ended at

(-2, 2)?
11. If the accelerometer’s readings travel from (0, 5) to (0, -5), then back again

repeatedly, what motion sequence is likely?
12. What's the value of YouWin?
13. What command can you use to check the value of a DATA directive's Symbol

name?
14. If you change the Maze DATA directive's @Address operator from 0 to 10, what

will you have to do to the other DATA directives in the program?
15. In TiltObstacleGame.bs2, what kind of code block enforces the rules of the

game?
16. What command changes the "%" values back to "$" values in EEPROM?

Exercises

1. Write a DEBUG command that places the cursor five spaces over, seven spaces
down, and then prints the message “* this is the coordinate (5, 7) in the Debug
Terminal”.

Chapter 5: Accelerometer Gaming Basics · Page 207

2. Write a DEBUG command that displays a Cartesian coordinate system from -2 to 2
on the X and Y axes.

3. Calculate the scale and offset you will need to display ordered pairs entered into
the Debug Terminal's Transmit windowpane on a Cartesian coordinate system
that goes from -5 to 5 on both the X and Y axes.

4. Write a routine that draws a rectangle with asterisks. This routine should be 15
asterisks wide and 5 asterisks high.

5. If your background is 5 characters wide by 3 characters high, predict the
minimum size variable you can use to set the address for your READ command
and explain your choice. Will you have any room for additional characters such
as CLS?

Projects

1. Modify CrsrXYPlot.bs2 so that it redraws the background before it plots the
asterisk.

2. Modify PlotXYGraph.bs2 so that it displays the coordinates of the most recently
placed asterisk to the right of the plot area.

Page 208 · Smart Sensors and Applications

Solutions

Q1. Human interface device.
Q2. CLRDN.
Q3. DEBUGIN DEC1 x.
Q4. Yes, you can also use IF…THEN statements to check whether values are out of

bounds.
Q5. 60, 70, and 72 Hz.
Q6. You can use a FOR…NEXT loop, with statements to retrieve and display each

character stored. Word variables store both the value and the sign.
Q7. Word variables store both the value and the sign.
Q8. The bubble moves to the right.
Q9. It went from a tilted right position to tilted left position.
Q10. The Y axis, or the long axis of the Board of Education.
Q11. Titling the board up and down repeatedly.
Q12. EEPROM address 486.
Q13. You can use the DEBUG command as you would to display the value of any other

numeric quantity, use the DEC modifier.
DEBUG DEC symbol
READ index + symbol, char

Q14. You would need to add 10 to each symbol value, so your program would
become:
YouLose DATA @253…
YouWin DATA @496 …

Q15. A SELECT…CASE statement.
Q16. The WRITE command.
E1. Example solution:

DEBUG CRSRXY, 5, 7,
 "* this is the coordinate (5,7) in the Debug Terminal"

E2. Example solution:
DEBUG CLS,
" 2| ", CR,
" 1| ", CR,
"----+----", CR,
"-2-1| 1 2", CR,
" -2| ", CR, CR

E3. X axis scale is 2 and offset is 10; Y axis, scale is -1 and offset is 5.
E4. Example solution:

x VAR Byte
y VAR Byte

Chapter 5: Accelerometer Gaming Basics · Page 209

FOR x = 1 TO 15
 FOR y = 1 TO 5
 DEBUG CRSRXY, x, y, "*"
 NEXT
NEXT

E5. The number of characters to store equals 5 x 3 = 15. The minimum variable size
to use would be a Nib (4 bits), with which the addresses could range from 0 to
15. There would be room for only one (1) additional character.

P1. The key to solving this problem is to move the graph inside the DO…LOOP, and
change CLS to HOME. There will be other ways to solve the problem as well.
Example solution:

DO
 DEBUG HOME,
 "0123456789X", CR,
 "1 ", CR,
 "2 ", CR,
 "3 ", CR,
 "4 ", CR,
 "5 ", CR,
 "Y ", CR, CR
 DEBUG "Type X coordinate: "
 DEBUGIN DEC1 x
 DEBUG CR, "Type Y coordinate: "
 DEBUGIN DEC1 y
 DEBUG CRSRXY, x, y, "*"
 DEBUG CRSRXY, 0, 10, "Press any key..."
 DEBUGIN temp
 DEBUG CRSRXY, 0, 8, CLRDN
LOOP

P2. Modify PlotXYGraph.bs2 so that it displays the coordinates of the most recently
placed asterisk to the right of the plot area. To properly display the negative
coordinates, use the SDEC modifier.
DO
 DEBUG "Type X coordinate: "
 DEBUGIN SDEC1 x
 DEBUG CR, "Type Y coordinate: "
 DEBUGIN SDEC1 y
 DEBUG CRSRXY, 15, 3, "(X,Y) = (",
 SDEC x, ",", SDEC y, ")", CLREOL
 x = (x * 2) + 6
 y = 3 - y
 DEBUG CRSRXY, x, y, "*"
 DEBUG CRSRXY, 0, 10, "Press any Key..."
 DEBUGIN temp
 DEBUG CRSRXY, 0, 8, CLRDN
LOOP

Page 210 · Smart Sensors and Applications

Chapter 6: Accelerometer Projects · Page 211

Chapter 6: More Accelerometer Projects

There are three types of projects in this chapter. The first type is a direct application of
hardware and programs that were used in earlier chapters. The second type requires
datalogging of the acceleration measurements, and so several activities are devoted to a
datalogging program. The third type requires datalogging to figure out what kind of
measurements the accelerometer will report. Then, based on the datalogging results, you
will have enough information to write a program to make the device work reliably.

ACTIVITY #1: MEASURE HEIGHTS OF BUILDINGS, TREES, ETC.
Climbing to the top of an object to measure its height is not always convenient, practical,
or even safe. This activity introduces a novel way to use some of the accelerometer
measurements developed in Chapter 3 to make height measurements from a safe vantage
point on the ground.

Sighting the Top and Determining Height

Figure 6-1 shows a scheme for measuring the height of an object, using the accelerometer
and LCD display as an angle-sight. First, sight the top of the object with the edge of your
board, and record the measured angle. Then, measure the distance between the spot you
took your measurement and the object, which is the adjacent side shown in Figure 6-1.
The adjacent distance, the angle θ, and the height of the accelerometer above the ground
are the three key pieces of information you need to calculate the object height.

Figure 6-1: Determining Height with Line-of-Sight

Page 212 · Smart Sensors and Applications

Parts Required

Use the parts list and circuit from Chapter 3, Activity #2 on page 71 for your angle-sight.

Example Program

Use the example program VertWheelRotation.bs2 from page 95 (Chapter 3, Activity #5)
along with the LCD display modifications in the Your Turn - LCD Display section on
page 96.

Procedure

√ Use your board to angle-sight the top of the object, and record the angle.
√ Measure the distance between the sight point and the object (adjacent side in

Figure 6-1).
√ Measure the height at which the accelerometer was held.
√ Use the calculations introduced next to determine the object's height.

Calculations

We know from earlier chapters θ is equal to the opposite side divided by the adjacent side
of a right triangle. Multiplying both sides by the adjacent distance results in an
expression for solving the opposite height. It's the adjacent distance multiplied by the
tangent of the angle.

θtanadjacentopposite

adjacent
oppositeθtan

=

=

After determining the opposite height (shown in Figure 6-1), all you have to do is add to
that the height at which you held the accelerometer when you took the measurement.

heightter acceleromeθtanadjacent heightobject

heightter acceleromeoppositeheightobject

+=

+=

Chapter 6: Accelerometer Projects · Page 213

Example

Let's say that the adjacent distance to an object is 10 m, and at that distance the
accelerometer was held 1.5 m from the ground to get the line of sight of the top of an
object. The angle reported by the accelerometer unit was 61°. From this, we can
estimate the height of the object to be 19.54 m, as shown below.

()()

m19.54
m1.5m18.04

heightteracceleromeoppositeheightobject

0418
8041m10
θtanm10

θtanadjacentopposite

m1.5heightterAccelerome
61θmeasuredterAccelerome

m10distanceAdjacent

=
+=
+=

=
=
=
=

=
°=

=

.
.

ACTIVITY #2: RECORD AND PLAYBACK
With accelerometer projects, it will often be necessary to record and play back lots of
accelerometer measurements. In some cases, recording the value is the desired function,
like datalogging how a car handles a turn. In other cases, such as detecting the human
walking motion, it will be necessary to understand what the measurements are like before
a program can be written that tracks steps. In either case, recording and playing back
acceleration measurements is a necessary ingredient. This activity introduces a program
with subroutines that demonstrate how to record, play back, and erase values stored in the
unused portion of the BASIC Stamp EEPROM program memory.

EEPROM Storage with DATA, WRITE and READ

While not required for recording and playing back measurements, DATA directives can be
used to set aside chunks of unused program memory. The DATA directive's optional

Page 214 · Smart Sensors and Applications

Symbol name is especially useful for recordkeeping. The Records DATA directive does
not actually store any values in EEPROM addresses 0 to 9. It just reserves these bytes for
your PBASIC code, and gives a name to the address of the first byte: Records. The
RecordsEnd DATA directive reserves a single byte at EEPROM address 10.

Records DATA (10)
RecordsEnd DATA

The Symbol names (Records and RecordsEnd) become constants that store the starting
address of the EEPROM DATA directives they precede. Table 6-1 shows how it works for
the two DATA directives. Since Records is the first DATA directive, it sets aside the first
ten bytes (addresses 0 to 9). Since address 0 is the beginning address, Records becomes
a constant for the value 0 in the program. Likewise, since the RecordsEnd DATA
directive sets aside a byte at address 10, RecordsEnd becomes the constant value 10 in
the program.

Table 6-1: DATA directives and EEPROM Addresses

Byte
Contents 00 00 00 00 00 00 00 00 00 00 00 00

Addresses 0 1 2 3 4 5 6 7 8 9 10 11

 Records = 0 RecordsEnd = 10

The EEPROM bytes don't necessarily contain zero. With the command
Records DATA (10), whatever values are already there will not be changed. If you
want to initialize the EEPROM values to zero, use Records DATA 0 (10). This will
store 0 in EEPROM addresses 0 to 9. The BASIC Stamp Editor only does this when it
downloads the program. If you press and release your board's Reset button or disconnect
and reconnect power, no values are written to those EEPROM addresses. This is a handy
feature, as you will see in the next activity.

The Clear_Data subroutine in the next example program has a FOR...NEXT loop that
repeats from Records to RecordsEnd (0 to 10). Each time through the loop, the
eeIndex variable increases by 1, so WRITE eeIndex, 100 stores 100 in each of the
EEPROM bytes, from address 0 to address 10.

Chapter 6: Accelerometer Projects · Page 215

Clear_Data:
 FOR eeIndex = Records TO RecordsEnd
 WRITE eeIndex, 100
 NEXT
 DEBUG CR, "Records cleared."
 PAUSE 1000
 RETURN

The Record_Data subroutine in the next example program collects the values that you
enter into the Debug Terminal's Transmit windowpane. In the next activity, this
subroutine will be modified to store accelerometer readings instead. The FOR...NEXT loop
again starts at Records and repeats until eeIndex exceeds RecordsEnd. Each time
through the loop, the value variable receives a signed decimal number from the Debug
Terminal's Transmit windowpane and stores it in the EEPROM address selected by
eeIndex with WRITE eeIndex, value.

Record_Data:
 DEBUG CR, "Enter values from -100 to 100", CR
 FOR eeIndex = Records TO RecordsEnd
 DEBUG "Record ", DEC eeIndex, " >"
 DEBUGIN SDEC value
 value = value + 100
 WRITE eeIndex, value
 NEXT
 DEBUG CR, "End of records.",
 CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

Saving space with value = value + 100

Before each value variables’ content is copied to EEPROM, 100 is added to it. So instead
of a value between −100 and 100, a value between 0 and 200 is stored in the EEPROM.
This is because each EEPROM memory cell can store a byte-sized value between 0 and
255. Storing negative numbers would require word-sized storage.

Word-size values can also be stored with DATA directives if you place the Word modifier
before the DataItem. For example WRITE eeIndex, Word value. Keep in mind
that this command uses two EEPROM bytes to store the word-size value, so eeIndex will
have to be incremented by 2 before the next value is written. By adding 100, we’ve saved
one byte-sized cell per write.

To retrieve and display the values that were stored, the Display_Data subroutine has a
FOR...NEXT loop with READ eeIndex, value. Since 100 was added to each value before

Page 216 · Smart Sensors and Applications

it was stored with the WRITE command, 100 is subtracted from the value variable after
the READ command to bring value back into the −100 to 100 scale.

Display_Data:
 DEBUG CR, "Index Record",
 CR, "----- ------",
 CR
 FOR eeIndex = Records TO RecordsEnd
 READ eeIndex, value
 value = value - 100
 DEBUG DEC eeIndex, CRSRX, 7, SDEC value, CR
 NEXT
 DEBUG CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

Example Program: EepromDataStorage.bs2

This example program displays a three-choice menu in the Debug Terminal's Receive
windowpane shown in Figure 6-2. By typing C into the Debug Terminal's Transmit
windowpane, the values in the EEPROM set aside for storage are cleared. If R is typed,
the program records values you enter into the Receive windowpane in EEPROM. If D is
typed, the values that were stored in EEPROM are displayed.

Transmit
Windowpane

Receive
Windowpane

Figure 6-2
Entering Values for
EepromDataStorage.
bs2

√ Enter, save, and run EepromDataStorage.bs2.
√ Click the Debug Terminal's Transmit windowpane.
√ Type R, and then enter eleven values between −100 and 100. Press the Enter

key when prompted after the eleventh value to get back to the menu.

Chapter 6: Accelerometer Projects · Page 217

√ Type D and verify that the values you entered are correctly displayed. Press the
enter key to return to the menu.

√ Type C to clear the memory.
√ Type D to verify that the memory values have been cleared (set to zero).

' -----[Title]--
' Smart Sensors and Applications - EepromDataStorage.bs2
' Demonstrates storing, retrieving and erasing values in EEPROM memory.

'{$STAMP BS2}
'{$PBASIC 2.5}

' -----[DATA Directives]--

Records DATA (10)
RecordsEnd DATA

' -----[Variables]--

char VAR Byte
eeIndex VAR Word
value VAR Word

' -----[Main Routine]---

DO

 DEBUG CLS,
 "Type C, R or D", CR,
 "C - Clear records", CR,
 "R - Record records", CR,
 "D - Display records", CR,
 ">"

 DEBUGIN char
 DEBUG CR

 SELECT char
 CASE "C", "c"
 GOSUB Clear_Data
 CASE "R", "r"
 GOSUB Record_Data
 CASE "D", "d"
 GOSUB Display_Data
 CASE ELSE
 DEBUG CR, "Not a valid entry.",
 CR, "Try again."
 PAUSE 1500
 ENDSELECT

Page 218 · Smart Sensors and Applications

LOOP

' -----[Subroutine - Clear_Data]--

Clear_Data:
 FOR eeIndex = Records TO RecordsEnd
 WRITE eeIndex, 100
 NEXT
 DEBUG CR, "Records cleared."
 PAUSE 1000
 RETURN

' -----[Subroutine - Record_Data]---

Record_Data:
 DEBUG CR, "Enter values from -100 to 100", CR
 FOR eeIndex = Records TO RecordsEnd
 DEBUG "Record ", DEC eeIndex, " >"
 DEBUGIN SDEC value
 value = value + 100
 WRITE eeIndex, value
 NEXT
 DEBUG CR, "End of records.",
 CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

' -----[Subroutine - Display_Data]--

Display_Data:
 DEBUG CR, "Index Record",
 CR, "----- ------",
 CR
 FOR eeIndex = Records TO RecordsEnd
 READ eeIndex, value
 value = value - 100
 DEBUG DEC eeIndex, CRSRX, 7, SDEC value, CR
 NEXT
 DEBUG CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

Your Turn - How Many Bytes do You Want to Store?

EepromDataStorage.bs2 uses the Records and RecordsEnd for all loops that perform
READ and WRITE operations. Because of this, you can change the number of values the

Chapter 6: Accelerometer Projects · Page 219

program stores by simply changing the number of elements in the Records DATA

directive.

√ Try changing the number of elements the program stores from 11 to 7. All you
have to do is change Records DATA (10) to Records DATA (6).

√ Test and verify that it works.

In Activity #4, we'll use this feature to change the number of records the program stores
to 1000 with Records DATA (1000). 11

ACTIVITY #3: USE EEPROM TO TOGGLE MODES
This activity introduces an EEPROM trick you can use to turn the Board of Education's
Reset button into a switch for selecting different program modes.

Code that Makes the Reset Button a Mode Selector

If you set aside one byte of EEPROM, it can give you the ability to select among as many
as 256 different program modes. In the next example program, we'll just use two modes:
a menu mode, and a mode that jumps to datalogging after a slight delay. Here is a DATA
directive that names an EEPROM byte Reset, and initializes the value stored by this byte
to zero.

Reset DATA 0

The simplest form of the initialization is an on/off switch configuration. This is where
the value from the Reset EEPROM byte is read, 1 is added to it, and then the modified
value is written to the Reset byte. The modified value is also examined to see if it is
odd or even with IF value // 2 = 0 THEN...

READ Reset, value
value = value + 1
WRITE Reset, value
IF value // 2 = 0 THEN END

In this example, if that condition is true, the program ends right there. The next time you
press and release your board's Reset button, value will be odd, the condition will be
false, and the code block will not halt the program before it has reached the Main
Routine. If the Reset button is pressed and released yet again, the code block will halt the

Page 220 · Smart Sensors and Applications

program again. The time after that, it does not halt the program, and so on. So the
program utilizes your Board of Education's Reset button as an on/off toggle button.

Below is an example that uses the code block in a different way. Instead of halting or
allowing the program to continue, the IF...THEN code block is skipped the first time the
program is run, then executed the second time the program is run (after pressing and
releasing the Reset button). It is then skipped the next time and executed again the time
after that. The net effect is that the program either counts down and jumps straight to the
Record_Data subroutine, or moves on to the main menu in the program, depending on
whether your board's Reset button has been pressed/released an odd or even number of
times.

' -----[Initialization]---------------------------------------

READ Reset, value
value = value + 1
WRITE Reset, value

IF value // 2 = 0 THEN

 FOR char = 15 TO 0
 DEBUG CLS, "Datalogging starts", CR,
 "in ", DEC2 char, " seconds",
 CR, CR,
 "Press/release Reset", CR,
 "for menu..."
 FREQOUT 4, 50, 3750
 PAUSE 950
 NEXT

 GOTO Record_Data

ENDIF

Example Program: EepromDataStorageWithReset.bs2

This program demonstrates how to use an address in EEPROM to control the way the
program behaves, depending on whether the program has been run or re-run an odd or
even number of times. The number of times the program has been run will be controlled
by the Reset button after download. If the Reset button has been pressed/released an
even number of times, the program starts with the menu from the previous activity. If it
has been pressed/released an odd number of times, it performs a countdown, and then
calls the Record_Data subroutine.

Chapter 6: Accelerometer Projects · Page 221

√ Enter and run EepromDataStorageWithReset.bs2.
√ Verify that you can toggle the program’s start mode by pressing and releasing

the Reset button.
√ Test the program's features, and make sure they all work.

' -----[Title]--
' Smart Sensors and Applications - EepromDataStorageWithReset.bs2
' Demonstrates storing, retrieving and erasing values in EEPROM memory.

'{$STAMP BS2}
'{$PBASIC 2.5}

' -----[DATA Directives]--

Reset DATA 0
Records DATA (10)
RecordsEnd DATA

' -----[Variables]--

char VAR Byte
eeIndex VAR Word
value VAR Word

' -----[Initialization]---------------------------------------

READ Reset, value
value = value + 1
WRITE Reset, value

IF value // 2 = 0 THEN

 FOR char = 15 TO 0
 DEBUG CLS, "Datalogging starts", CR,
 "in ", DEC2 char, " seconds",
 CR, CR,
 "Press/release Reset", CR,
 "for menu..."
 FREQOUT 4, 50, 3750
 PAUSE 950
 NEXT

 GOTO Record_Data

ENDIF

' -----[Main Routine]---

DO

Page 222 · Smart Sensors and Applications

 DEBUG CLS,
 "Press/Release Reset", CR,
 "to arm datalogger ", CR, CR,
 " - or - ", CR, CR,
 "Type C, R or D", CR,
 "C - Clear records", CR,
 "R - Record records", CR,
 "D - Display records", CR,
 ">"

 DEBUGIN char
 DEBUG CR

 SELECT char
 CASE "C", "c"
 GOSUB Clear_Data
 CASE "R", "r"
 GOSUB Record_Data
 CASE "D", "d"
 GOSUB Display_Data
 CASE ELSE
 DEBUG CR, "Not a valid entry.",
 CR, "Try again."
 PAUSE 1500
 ENDSELECT

LOOP

' -----[Subroutine - Clear_Data]--

Clear_Data:
 FOR eeIndex = Records TO RecordsEnd
 WRITE eeIndex, 100
 NEXT
 DEBUG CR, "Records cleared."
 PAUSE 1000
 RETURN

' -----[Subroutine - Record_Data]---

Record_Data:
 DEBUG CR, "Enter values from -100 to 100", CR
 FOR eeIndex = Records TO RecordsEnd
 DEBUG "Record ", DEC eeIndex, " >"
 DEBUGIN SDEC value
 value = value + 100
 WRITE eeIndex, value
 NEXT
 DEBUG CR, "End of records.",
 CR, "Press Enter for menu..."

Chapter 6: Accelerometer Projects · Page 223

 DEBUGIN char
 RETURN

' -----[Subroutine - Display_Data]--

Display_Data:
 DEBUG CR, "Index Record",
 CR, "----- ------",
 CR
 FOR eeIndex = Records TO RecordsEnd
 READ eeIndex, value
 value = value - 100
 DEBUG DEC eeIndex, CRSRX, 7, SDEC value, CR
 NEXT
 DEBUG CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

Your Turn - The DATA Directive's Automatic EEPROM Addressing

Did you notice that the record numbers changed in this program? Instead of 0 to 10, they
were 1 to 11. Try moving the Reset DATA directive after the other two. Then, run the
modified program and examine the result. Make tables similar to Table 6-1 that illustrate
the values stored by Reset, Records, and RecordsEnd. Make the first table to illustrate
the original program, and the second one to illustrate the modified program in which you
changed the order of the DATA directives.

ACTIVITY #4: REMOTE DATALOGGING OF ACCELERATION
In this activity, you will add a piezospeaker to the existing accelerometer circuit. Then,
you will modify the program so that it provides you with a remote datalogging tool that's
easy to operate. The piezospeaker will be handy for indicating countdown, start, and stop.
The accelerometer circuit will the same one used in Chapter #3, and the piezospeaker will
be added below it on the breadboard.

Parts Required

(1) Memsic 2125 Accelerometer
(2) 220 Ω resistors
(1) piezospeaker
(4) jumper wires

Page 224 · Smart Sensors and Applications

Circuit

√ Build the accelerometer and piezospeaker circuits shown in Figure 6-3.

Figure 6-3
Accelerometer and Piezospeaker
Schematic (left) and
Wiring Diagram (below)

Program Modifications

The next example program, DatalogAcceleration.bs2, is an expansion of
EepromDataStorageWithReset.bs2. It has been modified so that you can start, stop and
restart datalogging with your board's Reset button. You can disconnect the board from
your computer to perform the datalogging, and reconnect it to display the measurements
in the Debug Terminal. This is a crucial feature for taking field measurements and then
displaying them later.

DatalogAcceleration.bs2 has a modified Initialization section that makes the piezospeaker
beep every second for ten seconds before it starts datalogging.

' -----[Initialization]--

Init:
 .
 .

Chapter 6: Accelerometer Projects · Page 225

 .
 FOR char = 10 TO 0
 .
 .
 .
 FREQOUT 4, 50, 3750
 PAUSE 950
 NEXT
 .
 .
 .

DatalogAcceleration.bs2 also has a modified Record_Data subroutine that gets the x and
y values from the accelerometer, scales them to (-100 to 100), and writes both of them to
EEPROM. The FOR...NEXT loop increments in steps of 2 with the STEP 2 argument since
each time through the loop, the routine saves two bytes. The Display_Data subroutine
has similar modifications so that it displays both the x and y values in a table.

Record_Data:

 FREQOUT 4, 75, 4000
 PAUSE 200
 FREQOUT 4, 75, 4000

 DEBUG CLS, "Recording..."

 FOR eeIndex = Records TO RecordsEnd STEP 2

 PULSIN 6, 1, x
 PULSIN 7, 1, y

 x = (x MIN 1875 MAX 3125) - 1875 ** 10538
 y = (y MIN 1875 MAX 3125) - 1875 ** 10538

 WRITE eeIndex, x
 WRITE eeIndex + 1, y

 NEXT

 FREQOUT 4, 200, 4000

 DEBUG CR, "End of records.",
 CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

The piezospeaker also beeps twice at a higher pitch right at the beginning of the
datalogging. One important feature of this ten-second countdown is that you can stop the

Page 226 · Smart Sensors and Applications

datalogging before it starts by simply pressing and releasing your board's Reset button.
Then, to restart the countdown, just press and release the Reset button again.

Example Program: DatalogAcceleration.bs2

Free Download! This program is available as a free .bs2 file download from the Smart
Sensors and Applications Product Page at www.parallax.com.

This program takes and stores 500 accelerometer x and y-axis measurements in about 15
seconds. This equates to a sampling rate of about 33 measurements per second. This is
good for a variety of measurements. To measure longer and slower processes, the
Record_Data subroutine can be slowed down with a PAUSE command.

√ Open and run DatalogAcceleration.bs2.
√ Click the Debug Terminal's Transmit windowpane.
√ Type R to start recording, and tilt your accelerometer this way and that for

fifteen seconds.
√ When prompted, press Enter to return to the program's menu.
√ Type D to display the measurements. Review them and verify that they

correspond to how you tilted the accelerometer.
√ Disconnect your board from the serial cable. If it starts beeping as you do so,

press and release the reset button to make it stop.

When you are ready to start tilting the accelerometer for fifteen seconds, press and
release the Reset button. The datalogger will beep for a ten second countdown, then end
with two higher-pitched beeps signaling the start of the datalogging. It will make a single
high-pitched beep when it's finished.

√ Press and release the reset button. Wait the ten seconds, then tilt your
accelerometer in a pattern that you can remember, for 15 seconds.

√ Plug your accelerometer back into your computer. If it starts beeping, press and
release the reset button to stop the countdown.

√ Click the BASIC Stamp Editor's Run button to download the program to the
BASIC Stamp and refresh the Debug Terminal's Menu display.

√ Type D to display the datalogged measurements.
√ Compare them to the directions you tilted the board and make sure they

correspond.

Chapter 6: Accelerometer Projects · Page 227

' -----[Title]--
' Smart Sensors and Applications - DatalogAcceleration.bs2
' Datalogs 500 x and y-axis acceleration measurements.

'{$STAMP BS2}
'{$PBASIC 2.5}

' -----[DATA Directives]--

Reset DATA 0
Records DATA (1000)
RecordsEnd DATA

' -----[Variables]--

char VAR Byte
eeIndex VAR Word
value VAR Word
x VAR value
y VAR Word

' -----[Initialization]---

Init:

READ Reset, value
value = value + 1
WRITE Reset, value

IF value // 2 = 0 THEN

 FOR char = 10 TO 0
 DEBUG CLS, "Datalogging starts", CR,
 "in ", DEC2 char, " seconds",
 CR, CR,
 "Press/release Reset", CR,
 "for menu..."
 FREQOUT 4, 50, 3750
 PAUSE 950
 NEXT

 GOSUB Record_Data

ENDIF

' -----[Main Routine]---

DO

 DEBUG CLS,
 "Press/Release Reset", CR,

Page 228 · Smart Sensors and Applications

 "to arm datalogger ", CR, CR,
 " - or - ", CR, CR,
 "Type C, R or D", CR,
 "C - Clear records", CR,
 "R - Record records", CR,
 "D - Display records", CR,
 ">"

 DEBUGIN char
 DEBUG CR

 SELECT char
 CASE "C", "c"
 GOSUB Clear_Data
 CASE "R", "r"
 GOSUB Record_Data
 CASE "D", "d"
 GOSUB Display_Data
 CASE ELSE
 DEBUG CR, "Not a valid entry.",
 CR, "Try again."
 PAUSE 1500
 ENDSELECT

LOOP

' -----[Subroutine - Clear_Data]--

Clear_Data:
 DEBUG CR, "Clearing..."
 FOR eeIndex = Records TO RecordsEnd
 WRITE eeIndex, 0
 NEXT
 DEBUG CR, "Records cleared."
 PAUSE 1000
 RETURN

' -----[Subroutine - Record_Data]---

Record_Data:

 FREQOUT 4, 75, 4000
 PAUSE 200
 FREQOUT 4, 75, 4000

 DEBUG CLS, "Recording..."

 FOR eeIndex = Records TO RecordsEnd STEP 2

 PULSIN 6, 1, x
 PULSIN 7, 1, y

Chapter 6: Accelerometer Projects · Page 229

 x = (x MIN 1875 MAX 3125) - 1875 ** 10538
 y = (y MIN 1875 MAX 3125) - 1875 ** 10538

 WRITE eeIndex, x
 WRITE eeIndex + 1, y

 NEXT

 FREQOUT 4, 200, 4000

 DEBUG CR, "End of records.",
 CR, "Press Enter for menu..."
 DEBUGIN char

 RETURN

' -----[Subroutine - Display_Data]--

Display_Data:

 DEBUG CR, "Index x-axis y-axis",
 CR, "----- ------ ------",
 CR
 FOR eeIndex = Records TO RecordsEnd STEP 2
 READ eeIndex, x
 x = x - 100
 READ eeIndex + 1, y
 y = y - 100
 DEBUG DEC eeIndex, CRSRX, 7, SDEC x, CRSRX, 14, SDEC y, CR
 NEXT
 DEBUG CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

Your Turn - Datalogging Rotation Angle

Chapter 3, Activity #5 introduced vertical rotation measurements with the accelerometer.
Since binary radians are values from 0 to 255, you can store a single angle measurement
in one EEPROM byte. This will double the number of measurements the application will
take. It only takes a few modifications to DatalogAcceleration.bs2 to make it store
rotation angle instead. Here's how:

√ Save DatalogAccleration.bs2 as DatalogAngle.bs2.
√ Update the comments in the Title section.

Page 230 · Smart Sensors and Applications

√ Remove the STEP 2 argument from the FOR...NEXT loops in the Record_Data
and Display_Data subroutines.

√ In the Record_Data subroutine, replace these two WRITE commands:

 WRITE eeIndex, x
 WRITE eeIndex + 1, y

...with this ATN operation and WRITE command:

 value = x ATN y
 WRITE eeIndex, value

√ Modify the display heading in the Display_Data subroutine so that it looks like
this:

 DEBUG CR, "Index angle ",
 CR, "----- ------",
 CR

√ Replace these four commands:

 READ eeIndex, x
 x = x - 100
 READ eeIndex + 1, y
 y = y - 100

...with these two:

 READ eeIndex, value
 value = value */ 361

√ Save your changes and test the modified program.

ACTIVITY #5: RC CAR ACCELERATION STUDY
This activity demonstrates how to use the program DatalogAcceleration.bs2 from the
previous activity to analyze the acceleration forces on a radio-controlled (RC) car during
a variety of maneuvers. This activity also demonstrates how these datalogged
acceleration forces can be used to track and plot the car's velocity and position. Although
the actual equipment and calculations are somewhat more involved, deriving position
from successive acceleration measurements is a component of the inertial guidance
systems employed in rockets and spaceships. These systems use a combination of the

Chapter 6: Accelerometer Projects · Page 231

3-axis version of the acceleration measurements covered in this activity along with
gyroscopes that measure the vehicle's rotation.

Parts, Equipment and Circuit Diagrams

In addition to the parts for Activity #4, you will need an RC car and controller, which are
not included in the Smart Sensors and Applications Parts Kit. The circuit diagrams that
should be built on your board are at the beginning of Activity #4 in this chapter.

Hardware and Setup

Figure 6-4a shows an inexpensive RC car that can be obtained at many hobby shops and
retail electronics outlets. Figure 6-4b shows how the board was mounted. Rubber feet
were affixed to the underside of the board in a way that prevented any of its electrical
connections from coming in contact with any of the RC car's electrical metal parts.
Another option would be to use double-stick tape to affix the board to the roof of the
plastic shell. The board was oriented with the breadboard toward the front of the car.

Figure 6-4: RC Car with Acceleration Datalogger

a. b.

Avoid accidental short-circuits. Make sure your board is mounted on the car so that
exposed metal underneath the board has no way of coming in contact with any of the RC
car's metal parts or electrical connections.

How it Works

Figure 6-5 shows a graph of the accelerometer's y-axis measurements as the car
accelerated forward, slowed to a stop, and then accelerated backwards. The

Page 232 · Smart Sensors and Applications

measurements were acquired with DatalogAcceleration.bs2 from Activity #4. After
displaying them in the Debug Terminal, they were shaded, copied and pasted into
Windows Notepad. From there, they were imported into the Microsoft Excel spreadsheet
program and then graphed.

RC Car Forward and Backw ard

-40

-30

-20

-10

0

10

20

30

0 50 100 150 200 250 300

seconds/30

gr
av

ity
/1

00

Accelerate
Forward

Decelerate

Stop

Accelerate
Backward

Decelerate

Figure 6-5
RC Car Accelerometer Y-
Axis Measurements

The reason the forward acceleration is negative is because the ym sensing axis is pointing
to the back of the RC car as shown in Figure 6-6. So, as the car is accelerating forward,
the acceleration is negative. When a car slows down, it is actually accelerating
backwards. This is shown in Figure 6-5. First, the car accelerated forward, then it
applied the brakes and slowed down (decelerated). The y measurement was positive, so
acceleration was negative. After a brief stop, the car accelerated backwards. Notice that
the y is again positive. Then, when it slows down (decelerates) from its backwards speed
to stop again, the car is, in effect, accelerating forward, and the y measurement is
negative again.

Chapter 6: Accelerometer Projects · Page 233

a. b.

Figure 6-6
RC Car Acceleration vs
Accelerometer Sensing
Axes

If you're driving a car, when the car accelerates forward, you can feel the seat pushing
you forward. Well, if you make a sharp right turn, the left side of the car pushes you to
the right. That's because you are accelerating right as you turn. This is shown in Figure
6-7, which illustrates how an object can be traveling forward at a constant velocity, and
to make it turn, it always has to be accelerating toward the center of the circle it is
traveling in.

Figure 6-7
Traveling in a Circle

This causes continuous
acceleration toward the
center.

Figure 6-8 shows a graph of the accelerometer's x-axis measurements as the RC car is
first driven in circles turning left, then in circles turning right. Notice how the x-axis
measurement shows positive acceleration as the RC car circles to the left, and negative
acceleration as the car circles to the right.

Page 234 · Smart Sensors and Applications

RC Car Left then Right

-100

-80

-60

-40

-20

0

20

40

60

0 100 200 300 400 500 600

seconds/30

gr
av

ity
/1

00

Left Turn
Circles

Right Turn
Circles

Straighten
Out

Figure 6-8
RC Car Accelerometer
Measurements while
Driving in Circles

Figure 6-9 shows how the accelerometer's x-axis is oriented, and the acceleration it
measures. For a left turn, the car is accelerating to the left, which for the accelerometer is
a positive x-axis acceleration measurement. When it turns right, acceleration is in the
opposite direction of the positive x-axis, so the x-axis measurement it negative.

Figure 6-9: Sensing Acceleration during Turns

 a. b.

Chapter 6: Accelerometer Projects · Page 235

Procedure

The procedure for measuring and then graphing RC car acceleration is as follows.

√ Attach your board to the RC car.
√ Download DatalogAcceleration.bs2 into the BASIC Stamp.
√ Set the car down in an open area and press/release the board's Reset button.
√ Wait for the countdown to indicate that datalogging has started.
√ Drive the car through these maneuvers, in about 15 seconds:

o Accelerate the car forward, then come to a stop.
o Accelerate the car backward, then come to a stop.
o Drive in a figure-eight.

√ When the board beeps again (after about fifteen seconds) it means the
datalogging is over. Connect the board back to your PC.

√ Run DatalogAcceleration.bs2 again.
√ Click the Debug Terminal's Transmit windowpane.
√ Type D to display the data.
√ Use your mouse to shade the table headings and all the measurements in the

Debug Terminal's blue Receive windowpane. (Don't shade the menu.)
√ Press CTRL + C to copy the records.
√ Open Notepad.
√ Click Edit and select Paste.
√ Save the file.

These next instructions explain how to import the .txt file into Microsoft Excel 2002 and
graph it. If you are using a different spreadsheet program, the keywords such as space
delimited, XY scatter plot may provide leads on how to accomplish it with your
particular spreadsheet software.

√ In Excel, click File and select Open.
√ In the files of type field, select All files (*.*).
√ Find the .txt file you saved with notepad, select it, and click the Open button.
√ In Text Import Wizard Step 1, click the Delimited radio button, then click Next.
√ Click the checkbox next to Space to indicate that the file is space delimited.
√ Make sure the checkbox for "Treat consecutive delimiters as one" box is also

checked, then click next.
√ Make sure the radio button for General column data format is selected, then click

finish.

Page 236 · Smart Sensors and Applications

√ Your spreadsheet should be three columns wide and about 503 rows long.

The next step, which is also documented for Microsoft Excel 2002, is to run the chart
utility and tell it what to graph and how you want it to look.

√ Place the cursor in a cell somewhere to the right of your three columns of data.
√ Click Insert and select Chart.
√ In the Standard Types tab, select XY (Scatter). Also click the graphic that

configures it to "Scatter with data points connected to smoothed Lines without
markers". Then, click Next.

√ Assuming your y-axis data begins in C3 and ends in C503, type C3..C503 in the
Data range. Click the radio button next to Columns to indicate that the series of
data points is in a column. Then, click Next.

√ Fill in the chart title and axis information, then click Finish.
√ Repeat for the x-axis.

Only portions of each graph are relevant. Keep in mind that the data that will make
sense for the y-axis is the portion of time the car accelerated forward and backward.
Likewise, the part of the graph that will make sense for the x-axis is the portion when the car
was turning.

Graphing the Car's Position and Velocity

If you know the initial position and velocity of an object, you can use the acceleration
during a period of time to calculate its position. These calculations can be made
iteratively in a spreadsheet to plot the velocity and the path of the RC car.

Downloading the Spreadsheet. The MS Excel spreadsheets used to plot these graphs are
available for download from the Smart Sensors and Applications pages at
www.parallax.com. Download the spreadsheet and examine the equations in the various
columns along with the settings for each plot.

For example, the acceleration plot in Figure 6-10 shows a plot of the RC car as it
accelerates forward and backward. (The spreadsheet was modified so that positive values
indicate forward acceleration and negative values indicate backward acceleration or
deceleration.) So, this graph shows that the car accelerated forward at an average of
around 0.16 g for a little under 2 seconds. Then, it decelerated at an average of around

Chapter 6: Accelerometer Projects · Page 237

1.4 g for a little over 2 seconds. Then it rested for about 1 second. After that, it
accelerated backward, and then decelerated (accelerated forward) to a second stop.

Figure 6-10: Acceleration Graph Modified with Positive Acceleration Indicating Forward

Selecting Data to Graph. Right-click the line in the plot with the title "RC Car Acceleration
for Forward and Backward.” Then choose source data and click the Series tab. Note that
the series being plotted is from F229 to F492. This is the second of two forward/backward
tests that were performed during the datalogging session. The same applies to the Velocity
and Position graphs.

A column with an equation was added to the spreadsheet that calculates the change in
velocity for each acceleration measurement. The equation for velocity in a straight line is
v = v0 + at. That's the initial velocity (v0) plus the product of the acceleration (a) and the
duration of that acceleration (t). Adding a column to the spreadsheet that recalculates
velocity between each acceleration measurement makes it possible to graph the velocity
as shown in Figure 6-11. As expected, when the car accelerates forward, its velocity
increases. Then, when it slows down, its velocity decreases. As it accelerates backward,
its velocity decreases further (increases in the negative direction). Then, as it slows its
backward motion, its velocity returns to almost zero.

Page 238 · Smart Sensors and Applications

Figure 6-11: Velocity Graph Derived from Initial Position and Acceleration Data

The calculations for this plot are made in the spreadsheet's column-F. If you click cell F-
17 in the spreadsheet, this equation should appear in the function field:

 =F16 + (0.03*9.8*E17/100)

In this case, F16 is the cell just above F17, and it has the previous velocity. This previous
velocity is used as V0 for the sample interval. 0.03 is t, the time between samples, and
9.8 * E17 / 100 takes the E17 measurement, which is in hundredths of a g and converts
it to meters per second (m/s2). Dividing by 100 takes the value from hundredths of a g
down to g and then multiplying by 9.8 converts from g to m/s2. That's because 1 g is
approximately 9.8 m/s2.

With columns in the spreadsheet for acceleration and velocity, it is now possible to also
keep track of the car's position using the equation s = s0 + v0t + 1/2 at2. That is, the
position of the car (s) is equal to the initial position (s0) plus the product of initial velocity
and time (v0t), plus half the product of acceleration and the square of time (1/2 at2). The
resulting graph of position shown in Figure 6-12 is surprisingly accurate. The car did in
fact go forward to about the 3.5 meter mark before stopping. Then, it backed up and
came to rest almost a meter behind where it started.

Chapter 6: Accelerometer Projects · Page 239

Figure 6-12: Position Graph Derived from Initial Position, Initial Velocity and Acceleration Data

The equation that calculates position in the G17 cell is:

 =G16+(F16*0.03)+((0.5*E17*9.8/100)*(0.03^2))

G16 is the position after the previous sample, which is S0, the initial position. F16*0.03
is v0t, initial velocity multiplied by time. (0.5*E17*9.8/100)*(0.03^2) is 1/2 at2, where t
is again 0.03 seconds.

While this technique is pretty accurate over short periods of time, some error creeps into
each measurement from several sources. Rough surfaces and vibration will effect the
acceleration measurements. Also, while the equations assume the acceleration between
each measurement is constant, in many cases, the acceleration will change during the
time between each sample. In addition, each accelerometer measurement will tend to be
a few percent off because of the nature of the MX2125. The MX2125's datasheet
(available from Memsic's web site - www.memsic.com) explains these errors, the largest
of which are called zero offset and sensitivity errors. They will vary from one chip to the
next, and they are also influenced by temperature. Taking precision measurements with
the MX2125 involves an A/D converter, a floating point coprocessor, and data collected
from calibration tests. This calibration procedure is outside the scope of this text. To
find out more about this topic, consult #AN-00MX-002 Thermal Acceleromters
Temperature Compensation, which is available at Memsic's web site.

Page 240 · Smart Sensors and Applications

Your Turn - Logging Your RC Car's Acceleration/Velocity/Position

As mentioned earlier, the MS Excel spreadsheets used to plot these graphs are available
for download from the Smart Sensors and Applications pages at www.parallax.com.
Download the spreadsheet and examine the equations in the various columns along with
the settings for each plot. Then, experiment with plotting data gathered from your own
RC vehicle. Whatever data you plot should start from a known position with the car at
rest. That way you know the initial position (s0), and more importantly, the initial
velocity, v0 is 0 m/s.

ACTIVITY #6: SKATEBOARD TRICK ACCELERATION STUDY
This activity looks at a second acceleration study example. This one datalogs a
skateboard trick called the ollie. The setup for datalogging the ollie shown in Figure 6-13
is a BASIC Stamp HomeWork Board duct taped to the underside of a skateboard.

This Activity is included for illustration purposes only – the reader is not expected to
get on a skateboard! This is just an example of how the reader may use the
accelerometer to do motion studies with their own favorite hobbies or sports activities; the
author happens to be a skateboarder. With all your BASIC Stamp applications, use
common sense and appropriate protective gear, and conduct experiments at your own risk
(see Disclaimer of Liability on the reverse of the title page).

Figure 6-13: BASIC Stamp HomeWork Board Duct-taped to the Author’s Skateboard

Chapter 6: Accelerometer Projects · Page 241

About the Ollie

The first documented ollie was done by Alan (Ollie) Gelfand in the late 1970s. Gelfand
pioneered it in ramps and bowls. The flatland version of the ollie evolved in the early
1980s. When a skater does an ollie, he jumps, and it looks like his board is attached to his
feet, even though it's not. Regardless of the environment or skating style, most
skateboard tricks today are variations of the ollie.

Ollie Mechanics

Figure 6-14 shows the mechanics of an ollie. As the skater jumps, (a) his feet are both
pushing the board down. Just before the skater is about to become airborne, (b) he lifts
his front foot and at the same time extends his back foot to tiptoe, and the tail of the board
smacks the concrete. The momentum of the front of the board keeps it rising (c), and the
skater now lifts his back foot, and kicks his front foot forward. This causes the back of
the board to rise (d), and move slightly forward. As the deck meets the skater's back foot
(e), the skater applies just enough pressure to keep the board against his feet as it falls
back to the ground (f). The highest ollie to date, performed by Danny Wainwright, was
in excess of five feet high.

Figure 6-14: Ollie Mechanics

Page 242 · Smart Sensors and Applications

Graphing Ollie Acceleration

Figure 6-15 shows a graph of the accelerometer's y-axis for the first of two ollies that
were datalogged with the next example program. Each step from Figure 6-14 is marked
on the graph.

Acceleration vs Time for First Ollie

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

170 190 210 230 250 270

time (ms)

gr
av

ity
 (g

)

a, b c, d e

f

Figure 6-15
Acceleration during an
Ollie

This first ollie was a little deficient in Figure 6-14 steps b and c, so the back of the board
didn't quite meet the back foot in step e. Note that the impact of the board during step f
was 3.5 g. The highs and lows that follow step f resemble the oscillations when a bell is
struck. This is partially due to the board's vibration and partially due the turbulence of
the gas inside the accelerometer caused by the impact.

Figure 6-16 shows the data for a slightly better ollie. It was a little higher, and it made it
to step e gracefully. Notice that step a to b is steeper, and gets to -1.25 g before rising to
over 1 g for steps c and d. These values, which are larger than the ones from the previous
graph, indicate a higher ollie. Notice also that the impact was below 3 g, because the
skater was not trying to catch up with the board on the way down.

Chapter 6: Accelerometer Projects · Page 243

Acceleration vs Time for Second Ollie

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

775 795 815 835 855 875

time (ms)

gr
av

ity
, (

g)

a, b c, d
e

f

Figure 6-16
Graph of a Slightly Better
Ollie

Datalogging an Ollie

Figure 6-17 shows how the accelerometer's y sensing axis is aligned to sense the
skateboard's various tilts and rotations. This is the only axis we want to log in the next
example program.

Figure 6-17
Accelerometer’s Sensing
Axes on the Skateboard

The program from Activity #4 was modified to store just the raw y-axis accelerometer
measurements with no scale or offset. The value of y would range from 1875 to 3125
(for ± 1 g) if no acceleration is involved. When the acceleration measurement is 3.5 g,
that would result in a measurement of 4687. In any event, these are word values, and so
the WRITE command in the Record_Data subroutine has to be modified so that it stores
word variables. Since a word takes up two bytes, the FOR...NEXT loop still has to count in
steps of 2.

 FOR eeIndex = Records TO RecordsEnd STEP 2

 PULSIN 7, 1, y

 WRITE eeIndex, Word y

 NEXT

Page 244 · Smart Sensors and Applications

Similar modifications are made to the FOR...NEXT loop in the Display_Data subroutine
shown here.

 FOR eeIndex = Records TO RecordsEnd STEP 2

 READ eeIndex, Word y
 DEBUG DEC eeIndex, CRSRX, 7, SDEC y, CR

 NEXT

Example Program: DatalogYaxisUnscaled.bs2

This next example program was used to log the data graphed in Figure 6-15 and Figure 6-
16. It gives you about ten seconds of datalogging, which is enough time for two or three
ollies. Moving the data to a spreadsheet and graphing it is based on the procedure in
Activity #5. The spreadsheet was modified to generate the graphs shown in this activity
by adding a column with a formula that takes the y-axis data, subtracts 2500 from it, and
then divides it by 625. This gives a measurement in units of earth-gravity (g).

' -----[Title]--
' Smart Sensors and Applications - DatalogYaxisUnscaled.bs2
' Datalogs 500 word size y-axis acceleration measurements.

'{$STAMP BS2}
'{$PBASIC 2.5}

' -----[DATA Directives]--

Reset DATA 0
Records DATA (1000)
RecordsEnd DATA

' -----[Variables]--

char VAR Byte
eeIndex VAR Word
value VAR Word
x VAR value
y VAR Word

' -----[Initialization]---

Init:

READ Reset, value
value = value + 1
WRITE Reset, value

Chapter 6: Accelerometer Projects · Page 245

IF value // 2 = 0 THEN

 FOR char = 10 TO 0
 DEBUG CLS, "Datalogging starts", CR,
 "in ", DEC2 char, " seconds",
 CR, CR,
 "Press/release Reset", CR,
 "for menu..."
 FREQOUT 4, 50, 3750
 PAUSE 950
 NEXT

 GOSUB Record_Data

ENDIF

' -----[Main Routine]---

DO

 DEBUG CLS,
 "Press/Release Reset", CR,
 "to arm datalogger ", CR, CR,
 " - or - ", CR, CR,
 "Type C, R or D", CR,
 "C - Clear records", CR,
 "R - Record records", CR,
 "D - Display records", CR,
 ">"

 DEBUGIN char
 DEBUG CR

 SELECT char
 CASE "C", "c"
 GOSUB Clear_Data
 CASE "R", "r"
 GOSUB Record_Data
 CASE "D", "d"
 GOSUB Display_Data
 CASE ELSE
 DEBUG CR, "Not a valid entry.",
 CR, "Try again."
 PAUSE 1500
 ENDSELECT

LOOP

' -----[Subroutine - Clear_Data]--

Clear_Data:

Page 246 · Smart Sensors and Applications

 DEBUG CR, "Clearing..."

 FOR eeIndex = Records TO RecordsEnd
 WRITE eeIndex, 0
 NEXT

 DEBUG CR, "Records cleared."
 PAUSE 1000

 RETURN

' -----[Subroutine - Record_Data]---

Record_Data:

 FREQOUT 4, 75, 4000
 PAUSE 200
 FREQOUT 4, 75, 4000

 DEBUG CLS, "Recording..."

 FOR eeIndex = Records TO RecordsEnd STEP 2

 PULSIN 7, 1, y

 WRITE eeIndex, Word y

 NEXT

 FREQOUT 4, 200, 4000

 DEBUG CR, "End of records.",
 CR, "Press Enter for menu..."
 DEBUGIN char

 RETURN

' -----[Subroutine - Display_Data]--

Display_Data:

 DEBUG CR, "Index x-axis y-axis",
 CR, "----- ------ ------",
 CR

 FOR eeIndex = Records TO RecordsEnd STEP 2

 READ eeIndex, Word y
 DEBUG DEC eeIndex, CRSRX, 7, SDEC y, CR

Chapter 6: Accelerometer Projects · Page 247

 NEXT

 DEBUG CR, "Press Enter for menu..."
 DEBUGIN char

 RETURN

Your Turn - What Makes a High Ollie?

It would be interesting to datalog and compare different skaters' ollies. The best way to
do it would be to take video of each ollie, and then watch the video and examine the
graph at the same time. Another thing that can be measured is the time in the air, which
is the time between steps a and f in the graphs.

ACTIVITY #7: BICYCLE DISTANCE
Figure 6-18 on the next page shows how the board and accelerometer can be mounted
inside a bicycle wheel, in order to measure bicycle distance. As the bicycle is upright,
this might at first seem like an angle of rotation problem, like in Chapter 3, Activity #5.
However, there is also acceleration toward the center of the wheel that the axes will
measure. This is because the accelerometer is traveling in a circular path, just like the RC
car from the previous activity. This acceleration toward the center of the wheel will be
different at different speeds, and will result in skewed angle measurements. The
accelerometer measurements will also be affected when the bike rider applies the brakes,
speeds up, and leans into turns. In addition, what criteria should be used to add one to the
number of full circles the bike wheel has turned? This activity introduces hysteresis as a
way of measuring wheel rotation. It also demonstrates how the datalogging techniques
used in earlier activities can be used to examine each of these issues and test for
prototype reliability.

Do not let the metal on the underside of your board come into contact with the
spokes. Use an insulating material such as plastic, cardboard, or esd foam to insulate the
underside of the board from the spokes.

Page 248 · Smart Sensors and Applications

a. b.

Figure 6-18
HomeWork Board with
Accelerometer Mounted
on Bicycle Wheel

Counting Wheel Revolutions with Hysteresis

One problem with counting wheel revolutions is making sure that the program doesn't
advance the count if the wheel hasn't turned full circle. The most common mistake that is
made when measuring wheel revolutions is setting a single threshold. What if the rider is
waiting at a stop light, and is moving his/her bike back and forth by an inch or two? If
there is a single threshold, the wheel revolution counter will keep increasing every time
the rider rocks back and forth.

The next example program demonstrates a way of solving this problem with hysteresis.
Hysteresis is the process of setting two different values that have to be crossed before a
change in state occurs. In our case, the change of state is an increase in the wheel
revolution count. With hysteresis, the measurement must fall below a low value, and
then the program waits until it has risen up above a higher value before acknowledging
an upward change. Then, the measurement will have to go below the low threshold again
before a change from high to low is acknowledged. Each time the program
acknowledges that the measurement went below the low value and then above the high
value, it increases the wheel revolution count by 1.

Here is some code that performs hysteresis. In the first of the two nested DO...LOOP
blocks, the program waits until the y axis rises above 2650. Then, the second of the two
nested DO...LOOP commands waits until the y axis measurement drops below 2350. Only
then will it add 1 to the counter variable. After that, the program makes the
piezospeaker beep, and then repeats the outer DO...LOOP. At this point, the program is
back to waiting for the y axis measurement, which was below 2350 to rise back above

Chapter 6: Accelerometer Projects · Page 249

2650 again. Keep in mind that this is not necessarily the optimum way to measure wheel
revolutions. That's for you to determine.

DO

 DO UNTIL y > 2650
 PULSIN 7, 1, y
 LOOP

 DO UNTIL y < 2350
 PULSIN 7, 1, y
 LOOP

 counter = counter + 1
 FREQOUT 4, 200, 3750

LOOP

Deadband: The range between 2350 and 2650 in the code block above is referred to as
deadband.

Example Program: TestWheelCounter.bs2

√ Mount your board inside a bicycle wheel as shown in Figure 6-18. Make sure to
keep a good insulator between the spokes and the underside of the board.

√ Enter, save, and run TestWheelCounter.bs2.
√ Spin the wheel, and verify that it beeps once per revolution.

' Smart Sensors and Applications - TestWheelCounter.bs2
' Tracks bicycle wheel revolutions.

'{$STAMP BS2}
'{$PBASIC 2.5}

x VAR Word
y VAR Word
counter VAR Word

DEBUG CLS

DO

 DO UNTIL y > 2650
 PULSIN 7, 1, y
 LOOP

Page 250 · Smart Sensors and Applications

 DO UNTIL y < 2350
 PULSIN 7, 1, y
 LOOP

 counter = counter + 1
 FREQOUT 4, 200, 3750

LOOP

Datalogging Various Operating Conditions

It might seem at this point like the application is ready for some code that converts
revolutions to distance, and maybe an LCD display and a couple of buttons for selecting
LCD menu items. The problem here is we only examined the wheel turning two speeds.
What about when the rider is leaning into sharp turns – does the acceleration change
then? What about in cold and hot temperatures – will they cause the measurements to be
different? It certainly wouldn't do to have a product on the market that only tracked
bicycle distance some of the time. The product would get a bad reputation very quickly.

Figure 6-19 shows a datalogged acceleration study for the bicycle at two slightly different
speeds. The area around 400 ms is where the wheel was slowed down. The important
thing to note from this graph is the offset of the x and y-axis measurements. At the
higher speed, the y-axis signal varied between 1 and −0.5 g while the x-axis
measurements varied between −1.5 and 0.25 g. After slowing the wheel down, the y-axis
measurement varied between 1 and -1 g, while the x-axis measurement varied between
about 0.7 and −1.3 g.

Figure 6-19 is just a graph of two different speeds. True, the hysteresis code from
TestWheelCounter.bs2 works under both of these conditions, but does it work under ALL
conditions? With this kind of question, engineers might apply a few equations to predict
the accelerations under various extreme conditions that they anticipate. Simulation
software could also be used to verify the outcomes. Even if this kind of expertise is
available, the product still has to be tested in a variety of "real life" conditions, especially
to rule out the possibility of incorrect assumptions on the part of the engineers. That's
where datalogging comes back into the picture. The actual prototype still has to be taken
through the various conditions that it might experience on anybody's bicycle before it is
safe to make the investment in the plastic case, a refined electronic design that features
low cost parts, mass production and inventory costs.

Chapter 6: Accelerometer Projects · Page 251

Figure 6-19: Bicycle Wheel Acceleration Study

Bike Wheel at Two Different Speeds

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 100 200 300 400 500 600 700 800 900 1000

time, ms

gr
av

ity
, g

Accelerometer
y-axis

Accelerometer
x-axis

With this in mind, we are back to performing acceleration studies, under as many
different situations as possible. Here is the program that was used to log the data for the
graph in Figure 6-19. Notice that it is logging word-sized values for both the x and y-axis
measurements. The spreadsheet is given the job of changing the raw accelerometer
PULSIN measurements into gravity measurements.

Example Program: BikeWheelAcceleration.bs2

As a project, test the bicycle meter in different temperatures and riding conditions, turns,
up hill, down hill, slow, fast, etc. Look for a sequence of changes in measurements that
can be tracked regardless of the conditions. If there is not a hysteresis range for all
conditions, your code may need to periodically update the most recent high and low
values, and then look for hysteresis within that range.

' -----[Title]--
' Smart Sensors and Applications - BikeWheelAcceleration.bs2
' Datalogs 500 x and y-axis acceleration measurements.

'{$STAMP BS2}
'{$PBASIC 2.5}

Page 252 · Smart Sensors and Applications

' -----[DATA Directives]--

Reset DATA 0
Records DATA (1000)
RecordsEnd DATA

' -----[Variables]--

char VAR Byte
eeIndex VAR Word
value VAR Word
x VAR value
y VAR Word

' -----[Initialization]---

Init:

READ Reset, value
value = value + 1
WRITE Reset, value

IF value // 2 = 0 THEN

 FOR char = 10 TO 0
 DEBUG CLS, "Datalogging starts", CR,
 "in ", DEC2 char, " seconds",
 CR, CR,
 "Press/release Reset", CR,
 "for menu..."
 FREQOUT 4, 50, 3750
 PAUSE 950
 NEXT

 GOSUB Record_Data

ENDIF

' -----[Main Routine]---

DO

 DEBUG CLS,
 "Press/Release Reset", CR,
 "to arm datalogger ", CR, CR,
 " - or - ", CR, CR,
 "Type C, R or D", CR,
 "C - Clear records", CR,
 "R - Record records", CR,
 "D - Display records", CR,

Chapter 6: Accelerometer Projects · Page 253

 ">"

 DEBUGIN char
 DEBUG CR

 SELECT char
 CASE "C", "c"
 GOSUB Clear_Data
 CASE "R", "r"
 GOSUB Record_Data
 CASE "D", "d"
 GOSUB Display_Data
 CASE ELSE
 DEBUG CR, "Not a valid entry.",
 CR, "Try again."
 PAUSE 1500
 ENDSELECT

LOOP

' -----[Subroutine - Clear_Data]--

Clear_Data:
 DEBUG CR, "Clearing..."
 FOR eeIndex = Records TO RecordsEnd
 WRITE eeIndex, 0
 NEXT
 DEBUG CR, "Records cleared."
 PAUSE 1000
 RETURN

' -----[Subroutine - Record_Data]---

Record_Data:

 FREQOUT 4, 75, 4000
 PAUSE 200
 FREQOUT 4, 75, 4000

 DEBUG CLS, "Recording..."

 FOR eeIndex = Records TO RecordsEnd STEP 4

 PULSIN 6, 1, x
 PULSIN 7, 1, y

 WRITE eeIndex, Word x
 WRITE eeIndex + 2, Word y

 NEXT

Page 254 · Smart Sensors and Applications

 FREQOUT 4, 200, 4000

 DEBUG CR, "End of records.",
 CR, "Press Enter for menu..."
 DEBUGIN char

 RETURN

' -----[Subroutine - Display_Data]--

Display_Data:

 DEBUG CR, "Index x-axis y-axis",
 CR, "----- ------ ------",
 CR
 FOR eeIndex = Records TO RecordsEnd STEP 4
 READ eeIndex, Word x
 READ eeIndex + 2, Word y
 DEBUG DEC eeIndex, CRSRX, 7, SDEC x, CRSRX, 14, SDEC y, CR
 NEXT
 DEBUG CR, "Press Enter for menu..."
 DEBUGIN char
 RETURN

Your Turn

Another thing to examine is how vertical plane rotation measurements perform under the
various bicycle wheel conditions.

√ The Your Turn section of Activity #4 datalogs brad measurements. Use it to
datalog your bicycle wheel rotation in brads.

√ Graph the rotation over time under the various riding conditions discussed in this
Activity.

Is there an angle measurement behavior for which hysteresis can be applied under all
riding conditions?

Chapter 6: Accelerometer Projects · Page 255

SUMMARY
This chapter introduced a variety of accelerometer applications and datalogging
techniques that can be used to study the accelerometer's measurements in various
conditions, and in some cases, to refine your programs. When sighting the top of an
object, vertical plane rotation measurements can be used with the distance to the object
and some trigonometry to determine the object's height.

DATA directives with optional Symbol names were introduced as a way to simplify
recordkeeping in datalogging programs. They can be used to define ranges of unused
EEPROM program memory. Since Symbol names store the starting address of DATA
directives, they are handy in FOR...NEXT loops that perform READ/WRITE operations over
the range of EEPROM bytes defined by the beginning and ending DATA directives.

A technique was also introduced for using a DATA directive to set aside one byte for
setting the program mode. Each time the program starts, an initialization routine reads
the byte, adds one to it, and replaces the old value in EEPROM with the modified value.
Each time the program is restarted by pressing and releasing the board's Reset button, the
program can use the new value in EEPROM to select between different modes. For
toggling a feature in the program on and off, an IF...THEN statement was used that
examines whether the remainder of the value divided by two is zero. This makes it
possible to start and stop datalogging without being connected to the computer.

Accelerometer applications with datalogging included RC car acceleration, skateboard
trick measurements, and bicycle wheel measurements. Each of these employed a
program that was a variation of the remote datalogging program introduced in Activity
#4. The data displayed in the Debug Terminal was shaded, copied, and pasted into text
files. The text files were then imported into a spreadsheet program and graphed. The
graphs were analyzed to examine accelerations, tilts, and angles involved RC car,
skateboard, and bicycle wheel motions.

Questions

1. What three pieces of information do you need to measure the height of a building
from a distance?

2. What's the difference between DATA (100) and DATA 20 (100)?
3. What's wrong with this command? WRITE eeIndex, 1000. How can you fix

it?

Page 256 · Smart Sensors and Applications

4. What other directives and commands have to be present for IF value // 2 = 0
THEN... to make it possible to toggle program modes with your board's Reset
button?

5. What does the piezospeaker do in DatalogAcceleration.bs2?
6. How can you modify a DATA directive to make it set aside more values?
7. How does forward acceleration differ from forward deceleration?
8. When driving in circles at a constant velocity and radius, what direction is the

acceleration?
9. How does the datalogging program that measures a skateboarder's ollie differ

from the program that measures RC car motions? How are they similar?

Exercises

1. The top of a building was sighted to be 75° from a vantage point 15 m from the
building and 1 m from the ground. How tall is the building?

2. Write a pair of DATA directives that reserve 1501 bytes. Use symbol names.
3. Write a FOR...NEXT loop that retrieves 751 words. Assume that your DATA

directive Symbol names are StartData and EndData.
4. Modify a block of code in DatalogAcceleration.bs2 so that its countdown is five

seconds.

Projects

1. Use Google to find the slope above which snow is likely to avalanche. Prototype
a measuring device that warns you if a slope is too steep. This device could be
used to replace a mechanical one commonly used in ski resorts.

2. Design a pedometer (step counter) prototype.

Chapter 6: Accelerometer Projects · Page 257

Solutions

Q1. (1) The height from which the measurement is taken, (2) the distance from the
base of the building, and (3) the angle from horizontal at which the top of the
building was sighted.

Q2. The DATA (100) sets aside 100 bytes in EEPROM; whereas, DATA 20

(100)stores the value 20 in each of the 100 bytes.
Q3. The WRITE commands stores byte values. To fix the command, you would have

to insert the Word modifier before the value 1000. Keep in mind that you will
have to increment eeIndex by 2 before storing the next value.

Q4. You would need: Reset DATA 0; value VAR Word; READ Reset, value,
value = value + 1; WRITE Reset, value

Q5. It lets the user know what mode the device is operating in by emitting chirps
(tones of certain durations and frequencies). The countdown before datalogging
involves eleven 50 ms 3.75 kHz tones followed by two more pronounced higher
pitched tones (75 ms 4 kHz tones). After datalogging, the piezospeaker emits a
longer chirp (200 ms 4 kHz) to let the user know datalogging is complete.

Q6. Increase the value between parentheses that follows the DATA keyword.
Q7. If you are traveling forward and decelerating, it’s the same as accelerating

backwards, which is accelerating in the opposite direction of forward.
Q8. Toward the center of a circle.
Q9. This is a comparison of two example programs, DatalogAcceleration.bs2 against

DatalogYaxisUnscaled.bs2. DatalogAcceleration.bs2 stores x and y values that
are scaled down to 0 to 200 with 100 as 0 g. DatalogYaxisUnscaled.bs2 not only
stores the unscaled version, it doesn’t apply any offset either. It’s just the raw y-
axis measurement, which ranges from 1875 to 3125. In both programs, it takes a
word value to store each measurement in DatalogAcceleration.bs2, it’s a word (2
bytes) that stores the scaled and offset x and y-axis measurements. In
DatalogYaxisUnscaled.bs2, each y-axis value takes an entire word. Even though
the time it takes to store bytes is the same in both programs, some time between
measurements is saved by DatalogYaxisUnscaled.bs2 because it doesn’t take any
time for a PULSIN command that would otherwise read the x-axis.

E1. object height = opposite + accelerometer height
= (adjacent × tan (75˚)) m + 1 m
= (15 × 3.73) m + 1 m
= 56.98 m

Page 258 · Smart Sensors and Applications

E2.
StartSymbol DATA (1500)
EndSymbol DATA

E3.
' Assume StartData and EndData have been correctly defined
FOR counter = StartData TO EndData
 READ counter, dataItem
 DEBUG dataItem ' Format wasn't specified, so nothing like DEC was
 ' used. If DEC dataItem was used, it would still be
 ' right because that's what the text examples used.
NEXT

E4.
 FOR char = 4 TO 0
 DEBUG CLS, "Datalogging starts", CR,
 "in ", DEC2 char, " seconds",
 CR, CR,
 "Press/release Reset", CR,
 "for menu..."
 FREQOUT 4, 50, 3750
 PAUSE 950
 NEXT

P1. Keywords used: avalanche prediction slope
Resulting helpful article used: http://en.wikipedia.org/wiki/Avalanche
Key information: Terrain section states that steepness below 25˚ or above 60˚
presents low risk and that peak risk is in the 35 to 45˚ slopes.

The hardware could involve an accelerometer, LCD, pushbuttons to select mode,
and a piezospeaker for alarm. The key to the prototype would be to demonstrate
that the device can detect certain levels of risk from, say, the base of the slope.
Features can be added assuming the prototype is approved.

Note: Ski resorts regularly maintain their slopes by taking these measurements
and then launching explosive charges into the hill to create small avalanches,
thereby preventing a larger avalanche later. So even though it might seem risky
to measure from the bottom of the slope, we are talking about a slope that is
regularly maintained to prevent avalanches.

The prototype involves using your board to sight the top of the slope from the
base, which turns out to be a simple modification of the application discussed in
this Chapter’s Activity #1. A SELECT…CASE statement can be added to the
modified version of VertWheelRotation.bs2 that displays different messages on
the LCD based on the measured angle. The SELECT…CASE statement might look
like this when you’re done:

Chapter 6: Accelerometer Projects · Page 259

SELECT angle
 CASE 0 to 25
 GOSUB Display_Pretty_Safe
 CASE 25 to 35, 45 to 60
 GOSUB Display_Some_Danger
 CASE 35 to 45
 GOSUB Display_Max_Danger
 ENDSELECT

Each subroutine would display a risk indication message after the measured
angle.

P2. Load and run DatalogYaxisUnscaled.bs2. Clip the board to your belt at the hip
so that the y-axis is vertical. Press and release your board’s reset button and
walk during the datalogging period. Follow the instructions in Activity #5 for
plotting your datalogged points. You will probably want to graph 200 of the
1001 measurements. Look for a pattern, the graph should exceed some value
and go below some value with each step. Here is an example. Notice that each
step’s acceleration drops below 2900 then exceeds 3300.

Example walking plot:

x-axis ------

2500

2700

2900

3100

3300

3500

3700

3900

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241

x-axis ------

Use those values to define the StepLow and StepHigh constants in the program
below:

Page 260 · Smart Sensors and Applications

' Smart Sensors and Applications - Ch6_Project2.bs2

' IMPORTANT, follow the instructions to come up with your
' own values. You will find the Solutions section of Chapter 6.
' Examine the solution to Project 2 for information on how to
' determine your own StepLow and StepHigh constants.

' {$STAMP BS2}
' {$PBASIC 2.5}

StepLow CON 2900
StepHigh CON 3300

y VAR Word
yOld VAR Word
stepCnt VAR Word

yOld = 3300

PAUSE 250 ' Debounce the power supply
SEROUT 14, 84, [22, 12] ' Start LCD & clear display
PAUSE 5 ' Pause 5 ms for clear display

DO

 PULSIN 7, 1, y

 IF (y <= 2900 AND yOld >= 3300) OR (y >= 3300 AND yOld <= 2900) THEN
 yOld = y
 stepCnt = stepCnt + 1
 ENDIF

 SEROUT 14, 84, [128, DEC5 stepCnt / 2]

LOOP

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 261

Chapter 7: LCD Bar Graphs for Distance and Tilt

Defining and displaying custom characters with the Parallax Serial LCD was introduced
in Chapter 1, Activity #4. This chapter introduces some more custom character
techniques, and then applies them to bar graph displays. These displays will indicate the
distance of an object from the Ping))) ultrasonic sensor and the tilt of the Memsic 2125
Dual Axis Accelerometer.

ACTIVITY #1: CUSTOM CHARACTER SWAPPING
The Parallax Serial LCD can display up to eight custom characters at any given time.
However, there can be many more than eight custom characters in your application,
because custom characters can be defined and redefined as needed. The only limitation is
that only eight can be displayed simultaneously, and eight is ample for most projects.

The place where you can define and store a library of more than eight custom character
definitions is in the part of the BASIC Stamp EEPROM memory that is not used for
program storage. Since PBASIC programs rarely fill the entire EEPROM memory, there
is typically room for all the custom character definitions an application might need.

One powerful technique is to use just one of the LCD's eight custom character slots to
display a sequence of custom character definitions that are stored in the BASIC Stamp
EEPROM. This is especially useful for animation, but it will also be important for bar
graph displays. This activity provides an animation example.

From EEPROM Storage to LCD Character Memory

The next example program will demonstrate a convenient way to store custom character
definitions in the BASIC Stamp EEPROM. Two of the program's fifteen custom
character definitions are shown below. Each definition gets a unique Symbol name, like
Char0, Char1, Char2, and so on, up through Char14. Each of these Symbol names
represents the EEPROM address of the first byte in the DATA directive. The subroutine
that transfers the definitions from EEPROM to the LCD's custom character memory slots
uses these Symbol names as a reference point for reading the bytes from EEPROM.
After reading each byte from EEPROM, the subroutine sends it to the serial LCD.

Page 262 · Smart Sensors and Applications

 .
 .
 .
Char4 DATA %11111, ' * * * * *
 %00011, ' 0 0 0 * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111 ' * * * * *
 .
 .
 .
Char9 DATA %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11000, ' * * 0 0 0
 %11111 ' * * * * *
 .
 .
 .

The next example program fetches custom character definitions from EEPROM and
sends them to the serial LCD using a subroutine named Def_Cust_Char. All you have
to do before calling the subroutine is set the value of two variables: custChar and
charBase. The custChar variable is for selecting which custom character slot to define
(0, 1, 2...7). The charBase variable is used to tell the Def_Cust_Char subroutine where
to look in EEPROM for the beginning of the character definition. For example, to
transfer the Char9 definition in the BASIC Stamp EEPROM to Custom Character 5 in
the Parallax Serial LCD's character memory, use these three commands:

custChar = 5
charBase = Char9
GOSUB Def_Cust_Char

If your program has to choose among many different custom characters definitions, you
can replace charBase = Char9 with a LOOKUP command. Below is an example that
chooses one of the three different custom character definitions in the next example
program with a LOOKUP command. Depending on the value of counter, either Char0,
Char1 or Char2 will be copied to the charBase variable.

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 263

DO
 counter = counter + 1
 counter = counter // 3

 ' Define custom character.
 custChar = 5
 LOOKUP counter,
 [Char0, Char1, Char2],
 charBase
 GOSUB Def_Cust_Char
 .
 .
 .
LOOP

How to make counter count 0, 1, 2, 0, 1, 2, ... without FOR...NEXT

The code block above is in a DO...LOOP, so it gets repeated indefinitely. The counter
variable increases by 1 each time through a loop. The command counter = counter
// 3 uses the PBASIC modulus operator // to calculate the remainder of counter ÷ 3. By
setting counter equal to the remainder of counter ÷ 3, it causes counter to only count to 2
before falling back to 0. The resulting sequence of values stored by counter is 0, 1, 2, 0, 1,
2, 0, 1, 2, ...

To display the custom character at a certain character, the next example program has a
Disp_Cust_Char subroutine. This subroutine depends on three variables, line,
custChar, and cursor. The line variable should be set to either Line0 or Line1,
which are defined in the example program's Constants section. Again, the custChar
variable is a value between 0 and 7, which selects a custom character in the LCD's
character memory. The cursor variable can be a value from 0 to 15 depending on how
far from the LCD's left you want the character printed. For example, to print Custom
Character 5 on the LCD's Line 0 at character 8, use these commands:

custChar = 5
line = Line0
cursor = 8
GOSUB Disp_Cust_Char

Since the next example program is just animating a character, a simple FOR...NEXT loop
can be used to access each of the custom character DATA directives. The starting address
of each DATA directive will be eight bytes after the next. Updating the LCD with each
character definition in the sequence of DATA directives can be done with a FOR...NEXT
loop that takes steps of 8, and begins at Char0 and ends at Char14.

Page 264 · Smart Sensors and Applications

DO

 FOR charBase = Char0 TO Char14 STEP 8
 GOSUB Def_Cust_Char
 cursor = 7
 GOSUB Disp_Cust_Char
 PAUSE 200 '- charBase
 NEXT

 PAUSE 1000

LOOP

Example Program: EepromPixelWorm.bs2

Free Download! This program is available as a free .bs2 file download from the Smart
Sensors and Applications Product Page at www.parallax.com.

 EepromPixelWorm.bs2 creates a pixel-worm, crawling through a character.

√ Examine the EEPROM character definitions and predict how the animation will
look when you run the program.

√ Open and run EepromPixelWorm.bs2.
√ Compare your expected results to the LCD display.

' -----[Title]--
' Smart Sensors and Applications - EepromPixelWorm.bs2
' Displays an animated pixel worm within a single LCD character

' {$STAMP BS2} ' Target device = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[EEPROM Data]--

Char0 DATA %11111, ' * * * * *
 %01111, ' 0 * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111 ' * * * * *

Char1 DATA %11111, ' * * * * *
 %00111, ' 0 0 * * *

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 265

 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111 ' * * * * *

Char2 DATA %11111, ' * * * * *
 %00011, ' 0 0 0 * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111 ' * * * * *

Char3 DATA %11111, ' * * * * *
 %00011, ' 0 0 0 * *
 %11011, ' * * 0 * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111 ' * * * * *

Char4 DATA %11111, ' * * * * *
 %00011, ' 0 0 0 * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111 ' * * * * *

Char5 DATA %11111, ' * * * * *
 %10011, ' * 0 0 * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111 ' * * * * *

Char6 DATA %11111, ' * * * * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11111, ' * * * * *
 %11111 ' * * * * *

Page 266 · Smart Sensors and Applications

Char7 DATA %11111, ' * * * * *
 %11111, ' * * * * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11111 ' * * * * *

Char8 DATA %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11001, ' * * 0 0 *
 %11111 ' * * * * *

Char9 DATA %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11011, ' * * 0 * *
 %11011, ' * * 0 * *
 %11000, ' * * 0 0 0
 %11111 ' * * * * *

Char10 DATA %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11011, ' * * 0 * *
 %11000, ' * * 0 0 0
 %11111 ' * * * * *

Char11 DATA %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11000, ' * * 0 0 0
 %11111 ' * * * * *

Char12 DATA %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 267

 %11111, ' * * * * *
 %11100, ' * * * 0 0
 %11111 ' * * * * *

Char13 DATA %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11110, ' * * * * 0
 %11111 ' * * * * *

Char14 DATA %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111 ' * * * * *

' -----[I/O Pins]---

LcdPin PIN 14 ' I/O pin connected to LCD's RX

' -----[Constants]--

T9600 CON 84 ' True, 8-bits, no parity, 9600

LcdCls CON 12 ' Form feed -> clear screen
LcdCr CON 13 ' Carriage return
LcdOff CON 21 ' Turns display off
LcdOn CON 22 ' Turns display on
Line0 CON 128 ' Line 0, character 0
Line1 CON 148 ' Line 1, character 0
Define CON 248 ' Address defines cust char 0

' -----[Variables]--

custChar VAR Nib ' Custom charcter selector
index VAR Nib ' Eeprom index variable
charBase VAR Byte ' Character base for READ
dotLine VAR Byte ' 5-pixel dotted line
cursor VAR Nib ' Cursor placement
counter VAR Nib ' Main loop counting variable
line VAR Byte ' Line0 or Line1

' -----[Initialization]---

PAUSE 100 ' Debounce power supply

Page 268 · Smart Sensors and Applications

SEROUT LcdPin, T9600, [LcdOn, LcdCls] ' Initialize LCD
PAUSE 5 ' 5 ms delay for clearing display

custChar = 2 ' Select Custom Character 2
line = Line0 ' BarGraph on Line 0.

' -----[Main Routine]---

DO ' Main loop

 FOR charBase = Char0 TO Char14 STEP 8 ' Go through 10 custom characters
 GOSUB Def_Cust_Char ' Define the chracter
 cursor = 7 ' Place the cursor
 GOSUB Disp_Cust_Char ' Print the character
 PAUSE 200 '- charBase ' charbase bigger - pause smaller
 NEXT ' Repeat FOR charbase...

 PAUSE 1000 ' Pause 1 second

LOOP ' Repeat main loop

' -----[Subroutine - Def_Cust_Char]---

' This subroutine defines one of the LCD's eight custom characters. Set the
' charBase variable equal to one of the Symbol name that precedes the
' custom character's DATA directive. Set the custChar variable to a value
' between 0 and 7 to select one of the LCD's eight custom characters.

Def_Cust_Char:
 SEROUT LcdPin, T9600, ' Define custom character
 [Define + custChar]
 FOR index = 0 TO 7 ' 7 bytes, define 7 dotted lines
 READ charBase + index, dotLine ' Get byte for dotted line
 SEROUT LcdPin, T9600, [dotLine] ' Send it to the LCD
 NEXT

 RETURN

' -----[Subroutines - Disp_Cust_Char]---------------------------------------

' This subroutine displays a custom character. The line variable can
' be set to either Line0 or Line1, and the cursor variable can be set
' to a value between 0 and 15. The custChar variable selects one of the
' LCD's custom characters and should be set to a value between 0 and 7.

Disp_Cust_Char:
 SEROUT LcdPin, T9600, ' Print custom character
 [line + cursor, custChar]
 RETURN

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 269

Inside the Subroutines - Def_Cust_Char and Disp_Cust_Char

Let's take a look at the Def_Cust_Char subroutine (below). The first command, SEROUT
LcdPin, T9600, [Define + custChar] sends a value between 248 and 255 to the
LCD. That's because Define is set to 248 in the Constants section. 248 is the value that
tells the LCD to define Custom Character 0. If you want to define Custom Character 1,
it's 249, and so on up to Custom Character 7, which is 255. So the term Define +
custChar can be 248 if custChar stores 0, or 249 if custChar stores 1, and so on up to
255 if custChar stores 7.

Def_Cust_Char:

 SEROUT LcdPin, T9600, ' Define Custom Character 2
 [Define + custChar]
 FOR index = 0 TO 7 ' 7 bytes, define 7 dotted lines
 READ charBase + index, dotLine ' Get byte for dotted line
 SEROUT LcdPin, T9600, [dotLine] ' Send it to the LCD
 NEXT

 RETURN

After the LCD receives a value between 248 and 255, it expects to receive eight more
bytes, each containing one of the eight horizontal dotted lines that make up a custom
character definition. The FOR...NEXT loop in Def_Cust_Char reads each byte in
EEPROM, starting at charBase. Keep in mind that the program's Main Routine sets
charBase to the Symbol name of one of the DATA directives, which is a constant equal to
the starting address of the data. The command READ charBase + index, dotLine
reads a byte of the character definition and stores it in the dotLine variable. The first
time through the FOR...NEXT loop, index is 0, so the first byte in the character definition
is fetched from EEPROM and stored in the dotLine variable. Then, the value stored by
dotLine is sent to the LCD with the command SEROUT LcdPin, T9600, [dotLine].
The second time through the FOR...NEXT loop, index is now 1, and so the second byte is
read from EEPROM and sent to the LCD. The third time through, the third byte in the
character definition is fetched and sent, and so on, up to the eighth byte when index gets
to 7.

The Disp_Cust_Char subroutine has just one command, SEROUT LcdPin, T9600,
[line + cursor, custChar]. It sends two values to the LCD. The first is line +
cursor, which places the cursor where the custom character is to be printed. The line
variable contains either Line0 or Line1. Line0 is a the constant value 128, which points
to character 0 on Line 0. Line1 is the constant value 148, which points to character 0 on

Page 270 · Smart Sensors and Applications

Line 1. By adding cursor (a value between 0 and 15) this gives you control over which
line and character the cursor is placed on. The custChar variable, which contains a
value between 0 and 7 will cause the custom character to be printed where the cursor has
been placed. The second value the SEROUT command sends is custChar, which contains
a value between 0 and 7. This value makes the LCD print a custom character where the
cursor was placed.

Disp_Cust_Char:

 SEROUT LcdPin, T9600,
 [line + cursor, custChar]
 RETURN

Your Turn - Multiple Copies of Custom Characters?

If you have lots of different custom characters, but you only want to display one at any
given time, you only need one of the LCD's custom character definitions. However, if
you want more than one different custom character to be displayed by the LCD at the
same time, use more than one of the different custom character definitions in the LCD's
character memory.

√ Save CustomEepromCharacters.bs2 as CustomEepromCharactersYourTurn.bs2.
√ Add this code block to the program's Initialization section.

custChar = 5
line = Line0
cursor = 9
GOSUB Disp_Cust_Char
line = Line1
GOSUB Disp_Cust_Char
cursor = 8
GOSUB Disp_Cust_Char

√ Run the program, and observe the result displayed on the LCD.

The main DO...LOOP is only updating Line 0, character 8, yet the other three instances of
Custom Character 5 are also changing! Why? When the definition of Custom Character
5 changes, all the Custom Character 5s on the display are automatically updated.

In some cases, this is a desirable. For example, you can get some interesting visual
effects from making 32 copies of one custom character and then repeatedly updating the
character definition. For situations where you want to display more than one custom

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 271

character at the same time, simply use more than one custom character. In other cases,
when you want the LCD to display more than one different custom character to display at
the same time, use different custom character definitions.

Custom character display summary:

• If you have lots of different custom characters, but you only want to display one
at any given time, use a single custom character and update its definition to
change the character.

• If you want more than one different custom character to be displayed by the
LCD at the same time, use more than one of the different custom character
definitions in the LCD's character memory.

For the second rule, about having more than one custom character on the display at one
time, the next activity provides a working example.

ACTIVITY #2: HORIZONTAL BAR GRAPHS FOR PING))) DISTANCE
This first bar graph example demonstrates how to graphically display a Ping))) sensor's
measurement of an object's centimeter distance.

Parts and Equipment

See Chapter #2, Activity #4.

A Horizontal Bar Graph

To test the next example program's horizontal bar graph, you will enter values into the
Debug Terminal's Transmit windowpane, and the LCD will display the result in bar
graph format as shown in Figure 7-1. Each row on the LCD has eighty columns of
vertical dotted lines. If you enter 1, the leftmost column in the leftmost character will go
black. Entering 2 will cause two columns to turn black. If you enter 29, it will cause 29
columns to turn black. Since each character is 5 columns wide, the value 29 is actually
displayed as five blacked out characters and the sixth character with four black columns.

Page 272 · Smart Sensors and Applications

Figure 7-1: Horizontal Bar Graph Custom Characters

Transmit
Windowpane

Receive

Windowpane

LCD
Bar Displays

The next example program uses both of the custom character display rules discussed in
the previous activity's Your Turn section. Depending on the value that is displayed, the
program stores one of five different character definitions in Custom Character 2.
However, unlike CustomEepromCharacters.bs2, this next program does not store custom
character definitions in the BASIC Stamp EEPROM. Instead, the definitions are derived
during program execution, based on the value of the variable being expressed by the bar
graph.

Figure 7-2 shows how definitions range from blank (Char0) to four black vertical
columns (Char4). These definitions will be stored in EEPROM, and used one at a time
to redefine character 2, since only one of them is needed at any given time. But the

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 273

program may need to display multiple copies of an all-black character for numbers
greater than 10; for this task it uses Custom Character 3.

Figure 7-2
Library of Definitions for
Custom Character 2

Example Program: HorizBarGraph.bs2

√ Enter, save, and run HorizBarGraph.bs2.
√ Click the Debug Terminal's Transmit windowpane.
√ Type the digit 8, then press the Enter key.
√ Check the bar graph and make sure the leftmost character is black, and the one

next to displays Char3.
√ Try the values shown in Figure 7-1.
√ Try 45, 46, 47, 48, 49, 50, 51, 52.
√ Experiment with limits such as 0, 80.
√ Try values outside the limits. What happens?

' -----[Title]--
' Smart Sensors and Applications - HorizBarGraph.bs2
' Display values entered into the Debug Terminal's Receive windowpane
' as horizontal bar graph data in the LCD.

' {$STAMP BS2} ' Target device = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Pins]---

LcdPin PIN 14 ' I/O pin connected to LCD's RX

Page 274 · Smart Sensors and Applications

' -----[Constants]--

T9600 CON 84 ' True, 8-bits, no parity, 9600

LcdCls CON 12 ' Form feed -> clear screen
LcdCr CON 13 ' Carriage return
LcdOff CON 21 ' Turns display off
LcdOn CON 22 ' Turns display on
Line0 CON 128 ' Line 0, character 0
Line1 CON 148 ' Line 1, character 0
Define CON 248 ' Address defines cust char 0

' -----[Variables]--

custChar VAR Nib ' Custom charcter selector
index VAR Nib ' Eeprom index variable
dotLine VAR Byte ' 5-pixel dotted line
cursor VAR Nib ' Cursor placement
value VAR Byte ' Value to be graphed.
charCnt VAR Byte ' Character counting variable
line VAR Byte ' Line0 or Line1

' -----[Initialization]---

PAUSE 100 ' Debounce power supply
SEROUT LcdPin, T9600, [LcdOn, LcdCls] ' Initialize LCD
PAUSE 5 ' 5 ms delay for clearing display

custChar = 3 ' Select Custom Character 3
dotLine = %11111 ' Black all pixels in each line
GOSUB Def_Horiz_Bar_Char ' Character define subroutine

line = Line0 ' BarGraph on Line 0.

DEBUG "Enter values (0 to 80)", CR

' -----[Main Routine]---

DO ' Main loop

 DEBUG ">"
 DEBUGIN DEC value ' Value from Transmit windowpane
 GOSUB Bar_Graph ' Display as bar graph

LOOP ' Repeat main loop

' -----[Subroutine - Bar_Graph]---

Bar_Graph:

 ' Fill from left with black bars

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 275

 value = value MAX 80 ' Limit value - 0 to 80
 charCnt = value / 5 ' Number of black bars
 custChar = 3 ' Choose black custom character

 IF charCnt > 0 THEN ' If black bars to print then
 FOR cursor = 0 TO charCnt - 1 ' Print charCnt - 1 black bars
 GOSUB Disp_Cust_Char ' Print the black bar
 NEXT
 ENDIF

 ' Display Custom Character 2 with a certain number of black columns.

 cursor = charCnt ' Place cursor
 custChar = value // 5 ' How many 5ths of a bar?
 ' Choose bit pattern for custom character definition
 LOOKUP custChar,
 [%00000, %10000, %11000, %11100, %11110],
 dotLine
 custChar = 2 ' Set custom character to 2
 GOSUB Def_Horiz_Bar_Char ' Define the custom character
 GOSUB Disp_Cust_Char ' Display the custom character

 ' Print over everything to the right with spaces.

 IF (charCnt + 1) < 15 THEN ' Partial char left of char 15?
 FOR cursor = (charCnt + 1) TO 15 ' Fill to right with " "
 SEROUT LcdPin, T9600,
 [line + cursor, " "]
 NEXT
 ELSEIF value = 80 THEN ' Special case: value = 80
 SEROUT LcdPin, T9600,
 [line + cursor, 3]
 ELSEIF charCnt = 14 THEN ' Special case: 75 <= value <= 80
 SEROUT LcdPin, T9600, [line + 15, " "]
 ENDIF

 RETURN

' -----[Subroutine - Def_Horiz_Bar_Char]------------------------------------

Def_Horiz_Bar_Char:

 SEROUT LcdPin, T9600, ' Define custom character
 [Define + custChar]
 FOR index = 0 TO 7 ' 7 bytes, define 7 dotted lines
 SEROUT LcdPin, T9600, [dotLine] ' Send it to the LCD
 NEXT

 RETURN

Page 276 · Smart Sensors and Applications

' -----[Subroutines - Disp_Cust_Char]---------------------------------------

' This subroutine displays a custom character. The line variable can
' be set to either Line0 or Line1, and the cursor variable can be set
' to a value between 0 and 15. The custChar variable selects one of the
' LCD's custom characters and should be set to a value between 0 and 7.

Disp_Cust_Char:

 SEROUT LcdPin, T9600, ' Print custom character
 [line + cursor, custChar]
 RETURN

How HorizBarGraph.bs2 Works

The LCD's Custom Character 2 is reserved for displaying one of five different custom
character definitions, but Custom Character 3 will always use the same definition, to have
all its pixels black. With this in mind, a code block was added to the Initialization section
that defines the LCD's Custom Character 3 using the Def_Horiz_Bar_Char subroutine.
This subroutine makes 8 identical copies of the 5-pixel row stored by the dotLine
variable to build the custom character. After that, the line variable is set to place the
cursor on the top row, and the program displays a user prompt to "Enter values (0 to 80)",
followed by a carriage return.

custChar = 3 ' Select Custom Character 3
dotLine = %11111 ' Black all pixels in each line
GOSUB Def_Horiz_Bar_Char ' Character define subroutine

line = Line0 ' BarGraph on Line 0.

DEBUG "Enter values (0 to 80)", CR

The Main Routine is a DO...LOOP that repeatedly displays the ">" prompt, and then gets
decimal values entered into the Debug Terminal's Transmit windowpane. Then it calls the
Bar_Graph subroutine.

' -----[Main Routine]---

DO ' Main loop

 DEBUG ">"
 DEBUGIN DEC value ' Value from Transmit windowpane
 GOSUB Bar_Graph ' Display as bar graph

LOOP ' Repeat main loop

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 277

The Bar_Graph subroutine takes whatever is stored in the value variable and represents
it on the LCD with a bar graph display. This subroutine relies on both the
Def_Cust_Char and Disp_Cust_Char subroutines that were introduced in the previous
activity. The Bar_Graph subroutine consists of three major steps:

1. Fill any black characters from left to right. For example, if the value variable is
set to 28, five LCD characters (with 5 vertical black lines each) have to be
blackened.

2. Continuing with the example, the sixth LCD character will have three vertical
lines. Remember, Custom Character 2 is used to display one of five character
definitions shown in Figure 7-2. The number of black columns in the character is
the remainder is the remainder of value // 5. This result selects a bit pattern
from a LOOKUP table and copies it to the dotLine variable. Then custChar is set
to 2 and the Def_Horiz_Bar_Char subroutine copies this bit pattern to all 8
rows in the character. After the character is redefined, it can then be printed.

3. All characters not needed to represent the value on the bar graph have to be
cleared with the space " " character. In this value = 28 example, that means
clearing everything between the right of the sixth character and the 15th
character. While this only absolutely necessary the previous value is smaller
than the current value, the program does it every time through the loop.

The first step in the Bar_Graph subroutine is to fill black characters. The value variable
is first clamped to 80 or less. Next, the charCnt variable stores the number of black
characters that have to be printed, which is 1/5 of the value variable. The custChar
variable has to be set equal to three, since Custom Character 3 stores the black character.
If charCnt is larger than 0, it means there will be some all-black characters that have to
be printed, and a FOR...NEXT loop repeatedly calls the Disp_Cust_Char subroutine.
Remember, this subroutine depends on two variables: cursor and custChar. The value
of charCnt was set before the FOR...NEXT loop, and the cursor variable is the FOR...NEXT
loop's index variable. Each time through the FOR...NEXT loop, the cursor variable
increases by 1, which causes the Disp_Cust_Char subroutine to place the cursor one
notch to the right each time it is called, thereby filling black characters from left to right.

' -----[Subroutine - Bar_Graph]-----------------------------------

Bar_Graph:

 ' Fill from left with black bars

 value = value MAX 80 ' Limit value - 0 to 80

Page 278 · Smart Sensors and Applications

 charCnt = value / 5 ' Number of black bars
 custChar = 3 ' Choose black custom character

 IF charCnt > 0 THEN ' If black bars to print then
 FOR cursor = 0 TO charCnt - 1 ' Print charCnt - 1 black bars
 GOSUB Disp_Cust_Char ' Print the black bar
 NEXT
 ENDIF

The second step is to display the one character that is partially black. The command
cursor = charCnt makes sure that the cursor is now just to the right of the black
characters that were printed with a FOR...NEXT loop in the previous step. Next, custChar
= value // 5 sets the custChar variable to the remainder of value ÷ 5. For example, if
value is 28, the remainder of 28 ÷ 5 is 3. If custChar = 3, a lookup table stores %11100
in the dotLine variable. The Def_Horiz_Bar_Char subroutine needs to know two
things to do its job, the dotLine, and the custChar. We are using and re-using Custom
Character 2 for defining and redefining the partially blackened character. So, before
calling Def_Horiz_Bar_Char, custChar needs to be changed from 3 to 2 with the
command custChar = 2. Then, Def_Horiz_Bar_Char can be called to define the
custom character, followed by Disp_Cust_Char to display it.

 ' Display Custom Character 2 with a certain number of black columns.

 cursor = charCnt ' Place cursor
 custChar = value // 5 ' How many 5ths of a bar?
 ' Choose bit pattern for custom character definition
 LOOKUP custChar,
 [%00000, %10000, %11000, %11100, %11110],
 dotLine
 custChar = 2 ' Set custom character to 2
 GOSUB Def_Horiz_Bar_Char ' Define the custom character
 GOSUB Disp_Cust_Char ' Display the custom character

The Def_Horiz_Bar_Char subroutine that gets called after the value of dotLine and
custChar variables are set is what makes storing custom characters in EEPROM
unnecessary. Reason being, if you want to create a custom character with several
columns of black pixels, all you have to do is send the LCD the same binary value, eight
times in a row. The dotLine variable is the one that stores the binary definition for the
rows in the partially filled custom character. If dotLine is %11000, the left two columns
of pixels become black. If dotLine is %11100, the left three columns of pixels become
black, and so on.

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 279

Def_Horiz_Bar_Char:

 SEROUT LcdPin, T9600, ' Define custom character
 [Define + custChar]
 FOR index = 0 TO 7 ' 7 bytes, define 7 dotted lines
 SEROUT LcdPin, T9600, [dotLine] ' Send it to the LCD
 NEXT

 RETURN

Overprinting any black characters to the right of the character displayed in step 2 does
not involve any custom characters since the space character " " does a good job of erasing
things. For most cases, a FOR...NEXT loop printing from (charCnt + 1) TO 15 clears
everything to the right. However, there are some special circumstances that occur when
the 15th character has one or more black columns. If value = 80, an earlier part of the
program will print a blank character in position-0. Position-0 should be black, so the
ELSEIF value = 80 code block replaces that blank character with a black one. Also, if
charCnt is 14, a single empty character has to be printed in position 15.

 ' Print over everything to the right with spaces.

 IF charCnt + 1 < 15 THEN ' Partial char left of char 15?
 FOR cursor = (charCnt + 1) TO 15 ' Fill to right with " "
 SEROUT LcdPin, T9600,
 [Line0 + cursor, " "]
 NEXT
 ELSEIF value = 80 THEN ' Special case: value = 80
 SEROUT LcdPin, T9600,
 [Line0 + cursor, 3]
 ELSEIF charCnt = 14 THEN ' Special case: 75 <= value <= 80
 SEROUT LcdPin, T9600, [Line0 + 15, " "]
 ENDIF

 RETURN

Your Turn - Graphically Display Ping))) Sensor Distance

Displaying a horizontal bar graph that indicates up to 80 cm is easy with the Ping)))
sensor and the Parallax Serial LCD. The trick is to take components from
PingMeasureCm.bs2, and incorporate them into a copy of this activity's
HorizBarGraph.bs2.

√ Follow the instructions for connecting the Ping))) sensor and the Serial LCD to
your board. They're in Chapter 2, Activity #4, page 51.

Page 280 · Smart Sensors and Applications

√ Open PingMeasureCm.bs2 from Chapter 2, Activity #2 (page 48) into the
BASIC Stamp Editor.

√ Open HorizBarGraph.bs2 (this activity), and save it as PingBarGraph.bs2.
√ Shade and copy the CON and VAR directives from PingDistance.bs2, and paste

them into the CON and VAR sections in PingBarGraph.bs2.
√ Replace the DEBUG and DEBUGIN commands in PingBarGraph.bs2's Main

Routine DO...LOOP the commands in PingMeasureCm.bs2's DO...LOOP.
√ Add a command just before GOSUB Bar_Graph that sets the value variable equal

to cmDistance.
√ Then move the PAUSE 100 command so that it comes just before LOOP.

Now, the Main Routine in PingBarGraph.bs2 should look like this:

' -----[Main Routine]--

DO ' Main loop

 PULSOUT 15, 5
 PULSIN 15, 1, time

 cmDistance = CmConstant ** time

 DEBUG HOME, DEC3 cmDistance, " cm"

 value = cmDistance

 GOSUB Bar_Graph ' Display as bar graph

 PAUSE 100

LOOP ' Repeat main loop

√ Save the modified program, test it, and verify that it works.

You can also replace the DEBUG command with a SEROUT command that displays the
measurements on the bottom row. Remember that you will have to send the LCD a
control code to place the cursor on Line 1 character-0, instead of using HOME.

√ Try it!

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 281

ACTIVITY #3: TWO-AXIS BAR GRAPH FOR ACCELEROMETER TILT
This activity develops a two axis bar graph that is useful for graphically displaying the
accelerometer's tilt measurements.

Parts and Equipment

Use the circuit from Chapter 3, Activity #2, page 71.

Vertical Bar Graph Custom Characters

The Def_Vert_Bar_Char subroutine in the next example program defines any one of 16
different custom vertical bar characters. Figure 7-3 shows how each bar character
corresponds to a value.

Figure 7-3
Vertical Character Bar
Graph Values

The custom character definitions in Figure 7-3 follow a sequence that relates directly to
the values they represent, so the definitions can be calculated as needed rather than being
stored in EEPROM. Since each custom character definition takes up eight bytes,
eliminating 16 definitions will save 128 bytes of program memory.

The Def_Vert_Bar_Char subroutine defines the characters shown in Figure 7-3. The
value variable defines which one of the 0 to 15 characters will be displayed. Each bit in
the rowMap variable determines whether one of the rows in the custom character is black
or white.

Def_Vert_Bar_Char:

 SEROUT LcdPin, T9600,
 [Define + custChar]

 rowMap = %1111111100000000 >> (value & %1111)

Page 282 · Smart Sensors and Applications

 FOR index = 0 TO 7
 IF rowMap.LOWBIT(index) = 1 THEN
 SEROUT LcdPin, T9600, [%11111]
 ELSE
 SEROUT LcdPin, T9600, [%00000]
 ENDIF
 NEXT

 RETURN

The command rowMap = %1111111100000000 >> (value & %1111) shifts the eight
1 bits in %1111111100000000 right by the value variable. The term (value & %1111)
is called a bit mask, and it makes it possible to use values from 16 to 31 to give you the
same results as 0 to 15. If value is 3, the command rowMap = %1111111100000000
>> (value & %1111) stores %0001111111100000 in the rowMap variable. Since
rowMap is a only byte variable, it only stores the lowest eight bits of the term, which is
%11100000. Compare that to the custom character for 3 in Figure 7-3. If value is 4, the
low byte result of the rowMap variable is %11110000. Now, take a look at character 4 in
Figure 7-3. Try it for each value (0 to 15) and you'll see the pattern that the bits in the
rowMap byte match the pattern of the rows with black pixels in Figure 7-3.

Defining a custom character involves sending eight bytes. The binary values in each
successive byte define each of the eight rows in the character, from top to bottom. The
FOR...NEXT loop in the Def_Vert_Bar_Char subroutine has an IF...THEN code block that
uses the .LOWBIT operator to check each bit in the rowMap variable and use it to either
define a row of 5 black or white pixels in the custom character. Let's say that value is 3,
so rowMap is %11100000. The first time through the FOR...NEXT loop, index is 0, so the
IF...THEN statement examines rowMap.LOWBIT(0), the rightmost bit. Since it's 0, the
IF...THEN statement sends a byte containing %00000 to the LCD, which makes all the
pixels white. By the sixth time through the FOR...NEXT loop, rowMap.LOWBIT(5) = 1, so
the IF...THEN statement sends a SEROUT command with a byte containing %11111. So,
the sixth, seventh, and eighth rows down will be black, which results in the character
shown in Figure 7-3.

SEROUT 14, 84, [%11111] actually sends the byte %00011111, and the lower five
bits are the ones the LCD uses to define its five-pixel-wide rows.

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 283

Example Program: TestVerticalBars.bs2

This example program displays the 16 different vertical bar custom characters on the
Parallax Serial LCD's Line 0, character-8. It does so in rapid succession, over and over
again. It also displays the number that the value variable stores in the Debug Terminal.

√ Open TestVerticalBars.bs2 in the BASIC Stamp Editor.
√ Run it and verify that all the custom characters in Figure 7-3 are displayed.
√ Increase the PAUSE command’s Duration argument.
√ Re-run the program and verify that the LCD bars correctly represent the numbers

displayed in the Debug Terminal.

' -----[Title]--
' Smart Sensors and Applications - TestVerticalBars.bs2
' Displays sixteen different vertical bar characters on Line 0, character-8
' of the Parallax Serial LCD.

' {$STAMP BS2} ' Target device = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Pins]---

LcdPin PIN 14 ' I/O pin connected to LCD's RX

' -----[Constants]--

T9600 CON 84 ' True, 8-bits, no parity, 9600

LcdCls CON 12 ' Form feed -> clear screen
LcdOn CON 22 ' Turns display on
Line0 CON 128 ' Line 0, character 0
Line1 CON 148 ' Line 1, character 0
Define CON 248 ' Address defines cust char 0

' -----[Variables]--

custChar VAR Byte ' Custom character selector
index VAR Nib ' Eeprom index variable
rowMap VAR Byte ' 5-pixel dotted line
cursor VAR Byte ' Cursor placement
value VAR Byte ' Value to be graphed
line VAR Byte ' Line0 or Line1

' -----[Initialization]---

' LCD initializiation.
PAUSE 100 ' Debounce power supply

Page 284 · Smart Sensors and Applications

SEROUT LcdPin, T9600, [LcdOn, LcdCls] ' Initialize LCD
PAUSE 5 ' 5 ms delay for clearing display

' Custom character subroutine values.
custChar = 3 ' Use Custom Character 3
line = Line0 ' Cursor to Line0
cursor = 7 ' Cursor to 8th character

' -----[Main Routine]---

DO ' Main loop

 FOR value = 0 TO 16 ' value counts 0 to 16
 DEBUG ? value ' Display value in Debug Terminal
 GOSUB Def_Vert_Bar_Char ' Define bar graph character
 GOSUB Disp_Cust_Char ' Display character on LCD
 PAUSE 50 ' Slow down the loop
 NEXT

 DEBUG CR, CR ' Spaces before next sequence
 PAUSE 500 ' Delay before next sequence

LOOP ' Repeat main loop

' -----[Subroutine - Def_Vert_Bar_Char]-------------------------------------

' Defines a vertical bar graph character based on the value variable
' (0 to 15) and the custChar variable, which selects the Parallax Serial
' LCD's custom characters between 0 and 7.

Def_Vert_Bar_Char:
 ' Start define custom character
 SEROUT LcdPin, T9600,
 [Define + custChar]

 ' Select a row map for the custom character based on value.
 rowMap = %1111111100000000 >> (value & %1111)

 ' Send 8 bytes, each defining a dotted row in the custom character. Each
 ' row is determined by examining a bit in the rowMap variable, and then
 ' sending %11111 if the bit is 1, or %00000 if the bit is 0.
 FOR index = 0 TO 7 ' Repeat 7 times, index counts
 IF rowMap.LOWBIT(index) = 1 THEN ' Examine next bit in rowMap
 SEROUT LcdPin, T9600, [%11111] ' If 1, send %11111
 ELSE
 SEROUT LcdPin, T9600, [%00000] ' Otherwise, send %00000
 ENDIF
 NEXT
 ' Return from subroutine.
 RETURN

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 285

' -----[Subroutines - Disp_Cust_Char]---------------------------------------

' This subroutine displays a custom character. The line variable can
' be set to either Line0 or Line1, and the cursor variable can be set
' to a value between 0 and 15. The custChar variable selects one of the
' LCD's custom characters and should be set to a value between 0 and 7.

Disp_Cust_Char:
 SEROUT LcdPin, T9600, ' Print custom character
 [line + cursor, custChar]
 RETURN

Your Turn - 31 Levels Covering Two Rows and Adding a Horizontal Axis

The command that sets the bit pattern in the rowMap variable was
rowMap = %1111111100000000 >> (value & %1111). The calculation
value & %1111 will result in 0 if value is 16, in 1 if value is 17, and so on up to 15 if
value is 31. It will continue this pattern regardless of how large value becomes. Since
the bar graph will behave the same way for values between 16 and 31 as it does for
values between 0 and 15, the bar graph can be placed either on the upper or lower line to
indicate which range the value variable falls between. The actual display range is from
1 to 31, with 16 showing no bars.

Modifying the program to display characters in this fashion involves just a few small
changes to the Main Routine. First, the FOR...NEXT loop StartValue and EndValue
arguments have to be changed from (0 to 15) to (1 to 31). Also, a SEROUT command has
to be added to overwrite the previous custom characters with blank spaces. Then, an
IF...THEN...ELSE code block can be added that positions the cursor on either Line 0 or
Line 1. It must place the cursor on Line 0 when value is greater than 16, or on the lower
line when value is less than or equal to 16.

√ Save TestVerticalBars.bs2 as TestVerticalBarsYourTurn.bs2.
√ Modify the DO...LOOP in the Main Routine as shown below.
√ Run the program and verify that the bar graph now displays 31 different levels,

from 1 to 31.

DO

 FOR value = 1 TO 31
 SEROUT 14, 84, [Line0 + cursor, " ",
 Line1 + cursor, " "]
 IF value <= 16 THEN

Page 286 · Smart Sensors and Applications

 line = Line1
 ELSE
 line = Line0
 ENDIF
 DEBUG ? value
 GOSUB Def_Vert_Bar_Char
 GOSUB Disp_Cust_Char
 PAUSE 50
 NEXT

 DEBUG CR, CR
 PAUSE 500

LOOP

You can also nest the FOR value = 1 TO 31...NEXT loop inside a FOR cursor = 0 TO
15...NEXT loop, and cause the bar graph to move across the display each time it repeats.
By controlling the cursor offset like this, the bar graph can display two axes with vertical
values from 1 to 31 and horizontal values from 0 to 15.

√ Try it!

A Two-Axis Display

While the previous Your Turn section demonstrated displaying characters on two axes, a
completely blank display doesn't really communicate that the value is in the middle of its
range. A better way to get the message across is by causing two custom characters to
appear next to each other. Figure 7-4 shows how it works. The first two display
examples are not in the middle of either the horizontal or vertical ranges, so single
characters are displayed. The third example is in the middle of the horizontal range (8),
so the vertical measurement is displayed on two adjacent characters. The fourth example
shows that the measurement is in the middle of its vertical range, so rows in both the top
and bottom character have black pixels. When the measurement is centered in both the
horizontal and vertical the fifth example shows how it should look. These features are
especially important for graphically indicating when one or both of the two accelerometer
axes are level.

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 287

Figure 7-4
Points Plotted on the Two-
Axis Bar Graph

While the features shown in Figure 7-4 make the display a little less cryptic, the program
has to make a lot more decisions. In the next example program, the Bar_Graph_H_V and
Horizontal_Placement subroutines take care of all the decisions that support these
extra features.

Example Program: TwoAxisBarDisplay.bs2

Free Download! This program is available as a free .bs2 file download from the Smart
Sensors and Applications Product Page at www.parallax.com.

You can test this example program by entering horizontal and vertical coordinates into
the Debug Terminal's Transmit windowpane.

√ Open and run TwoAxisBarDisplay.bs2 with the BASIC Stamp Editor.
√ Enter values in the 0 to 16 range for horizontal and values in the 1 to 31 range

fore vertical, and observe the displayed results by the LCD.

Page 288 · Smart Sensors and Applications

√ Try the values shown in Figure 7-4 and verify that they match the displays.
√ Make sure to test horizontal values of 0, 8, and 16 for various vertical values.
√ Also test vertical values of 1, 16, and 31 for various horizontal values.

Another way of testing the display is with the alternate Main Routine shown below. It
has nested FOR...NEXT loops that test every value variable across all the possible cursor
variable values.

√ Save a copy of TwoAxisBarDisplay.bs2 as TwoAxisBarDisplayTest.bs2.
√ Run the modified program and watch to make sure all the values are displayed

correctly.

' -----[Main Routine]--

DO
 FOR cursor = 0 TO 16
 FOR value = 1 TO 31
 GOSUB Bar_Graph_H_V
 PAUSE 200
 NEXT
 SEROUT 14, 84, [LcdCls]
 PAUSE 500
 NEXT
LOOP

' -----[Title]--
' Smart Sensors and Applications - TwoAxisBarDisplay.bs2
' Displays a character that shifts both vertically and horizontally.

' {$STAMP BS2} ' Target device = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Pins]---

LcdPin PIN 14 ' I/O pin connected to LCD's RX

' -----[Constants]--

T9600 CON 84 ' True, 8-bits, no parity, 9600

LcdCls CON 12 ' Form feed -> clear screen
LcdCr CON 13 ' Carriage return
LcdOff CON 21 ' Turns display off
LcdOn CON 22 ' Turns display on
Line0 CON 128 ' Line 0, character 0
Line1 CON 148 ' Line 1, character 0
Define CON 248 ' Address defines cust char 0

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 289

' -----[Variables]--

custChar VAR Byte ' Custom charcter selector
index VAR Nib ' Eeprom index variable
rowMap VAR Byte ' 5-pixel dotted line
cursor VAR Byte ' Cursor placement
value VAR Byte ' Value to be graphed
line VAR Byte ' Line0 or Line1

' -----[Initialization]---

PAUSE 100 ' Debounce power supply
SEROUT LcdPin, T9600, [LcdOn, LcdCls] ' Initialize LCD
PAUSE 5 ' 5 ms delay for clearing display

' -----[Main Routine]---

DO ' Main loop

 DEBUG "Enter horizontal", ' Prompt for character offset
 CR, "value (0 TO 16)"
 DEBUGIN DEC cursor ' Get character offset
 DEBUG "Enter vertical",
 CR, "value (1 TO 31)" ' Prompt user for value
 DEBUGIN DEC value ' Get value
 GOSUB Bar_Graph_H_V ' Call Bar_Graph_H_V

LOOP ' Repeat main loop

' -----[Subroutines - Bar_Graph_H_V]---------------------------------------

' Defines and displays two axis bar graph characters based on the value of
' the cursor (0 to 16) and value (1 to 31). Calls Def_Vert_Bar_Char, and
' Horizontal_Placement.

Bar_Graph_H_V:

 SEROUT 14, 84, [LcdCls] ' Clear previous plot
 PAUSE 5 ' 5 ms delay for clearing display

 ' Decide whether to display on Line 0 or Line 1.
 IF value >= 16 THEN line = Line0 ELSE Line = Line1

 GOSUB Def_Vert_Bar_Char ' Define custom character
 GOSUB Horizontal_Placement

 IF value = 16 THEN ' Special case: value = 16

 value = 1 ' Line 0 display
 custChar = 2

Page 290 · Smart Sensors and Applications

 GOSUB Def_Vert_Bar_Char
 line = Line0
 GOSUB Horizontal_Placement

 value = 15 ' Line 1 Display
 custChar = 3
 GOSUB Def_Vert_Bar_Char
 line = Line1
 GOSUB Horizontal_Placement

 value = 16 ' Restore value

 ENDIF

 RETURN

' -----[Subroutine - Def_Vert_Bar_Char]-------------------------------------

' Defines a vertical bar graph character based on the value variable
' (0 to 15) and the custChar variable, which selects the Parallax Serial
' LCD's custom characters between 0 and 7.

Def_Vert_Bar_Char:

 ' Start define custom character
 SEROUT LcdPin, T9600,
 [Define + custChar]

 ' Select a row map for the custom character based on value.
 rowMap = %1111111100000000 >> (value & %1111)

 ' Send 8 bytes, each defining a dotted row in the custom character. Each
 ' row is determined by examining a bit in the rowMap variable, and then
 ' sending %11111 if the bit is 1, or %00000 if the bit is 0.
 FOR index = 0 TO 7 ' Repeat 7 times, index counts
 IF rowMap.LOWBIT(index) = 1 THEN ' Examine next bit in rowMap
 SEROUT 14, 84, [%11111] ' If 1, send %11111
 ELSE
 SEROUT 14, 84, [%00000] ' Otherwise, send %00000
 ENDIF
 NEXT
 ' Return from subroutine.
 RETURN

' -----[Subroutines - Horizontal_Placement]---------------------------------

' Places the vertical bar graph at one of the Parallax 2X16 LCD's sixteen
' vertical columns. The cursor variable can set the horizontal location to
' values between 0 and 16, with 8 the center. Calls Disp_Custom_Char.

Horizontal_Placement:

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 291

 SELECT cursor ' Cursor 0 to 7, no changes
 CASE 0 TO 7
 GOSUB Disp_Cust_Char
 CASE 8 ' Cursor 8, display at 7 & 8
 cursor = 7
 GOSUB Disp_Cust_Char
 cursor = 8
 GOSUB Disp_Cust_Char
 CASE 9 TO 16 ' Cursor 9 to 16, display 1 left
 cursor = cursor - 1
 GOSUB Disp_Cust_Char
 cursor = cursor + 1
 ENDSELECT

 RETURN

' -----[Subroutines - Disp_Cust_Char]---------------------------------------

' This subroutine displays a custom character. The line variable can
' be set to either Line0 or Line1, and the cursor variable can be set
' to a value between 0 and 15. The custChar variable selects one of the
' LCD's custom characters and should be set to a value between 0 and 7.

Disp_Cust_Char:

 SEROUT LcdPin, T9600, ' Print custom character
 [line + cursor, custChar]
 RETURN

Your Turn - Graphical Two-Axis Tilt Display

Indicating tilt with the TwoAxisBarDisplay.bs2 involves PULSIN commands to acquire
the accelerometer's x and y axis measurements. It also requires scaling and offset to fit
the accelerometer measurements into a vertical scale of 31 and a horizontal scale of 17.

The horizontal scale also has to be reversed. Figure 7-5 shows how the accelerometer's x
and y axes relate to the LCD's horizontal and vertical axes. Note that that the direction of
the positive y-axis points away from the direction that values increase on the LCD's
horizontal axis. Whenever the scaled y-axis value is 16, the display should show 0, and
whenever the scaled y-axis value is 0, the display should show 16. The way to correct
this is to use a command that subtracts the scaled y-axis value from 16. Essentially, this
boils down to cursor = 16 − (scaled y value).

Page 292 · Smart Sensors and Applications

Figure 7-5: Accelerometer X and Y Axes

This simplest way to convert TwoAxisBarDisplay.bs2 to a dual-axis accelerometer
leveling tool is to borrow code blocks from Chapter 3 and adjust them as needed. The x
and y axis variables, PULSIN commands, and the scale and offset commands from
HorizontalTilt.bs2 in Chapter 3, Activity #6 provide a starting point. The PULSIN and
scaling commands can replace the DEBUG and DEBUGIN commands in
TwoAxisBarDisplay.bs2's Main Routine. The Bar_Graph_H_V subroutine uses the
value and cursor variables to plot on the LCD. Before it can be called, value needs to
be set equal to the scaled x-axis value, and cursor needs to be set equal to the scaled y-
axis value, subtracted from 16.

Deriving the ** scale constants are left as exercises at the end of the chapter.

√ Save TwoAxisBarDisplay.bs2 as TwoAxisBarTiltDisplay.bs2.
√ Add these two declarations to the program's Variables section.

X VAR Word ' Accelerometer x-axis
y VAR Word ' Accelerometer y-axis

√ Replace the outermost DO...LOOP in the Main Routine with the one below:

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 293

DO ' Main loop

 PULSIN 6, 1, x
 PULSIN 7, 1, y

 value = (x MIN 1875 MAX 3125) - 1875 ** 1625 + 1
 cursor = 16 - ((y MIN 1875 MAX 3125) - 1875 ** 891)

 GOSUB Bar_Graph_H_V ' Call Bar_Graph_H_V

LOOP ' Repeat main loop

√ Save and run the program, and test under a variety of tilt circumstances.

Page 294 · Smart Sensors and Applications

SUMMARY
Both distance and tilt measurements lend themselves to bar graph displays. Most bar
graphs can be done using only one or two of the Parallax Serial LCD's eight custom
character memory slots. The custom character definitions for bar graphs can either be
stored in the BASIC Stamp EEPROM, or defined by code that relates the value being
graphed to the number of pixel lines or columns that need to be displayed.

Storing custom characters in EEPROM involves DATA directives that contain eight bytes
each. The lower five bits of each byte store the bit pattern for each of the eight (five-
pixel-wide) lines that make up a character. Symbol names preceding DATA directives
make it possible to copy the starting address of the bytes in a given DATA directive into a
variable. A subroutine can use the variable that stores the start address for READ
operations that sequentially copy bytes to a variable, then send the contents of that
variable to the LCD.

Displaying bar graphs is typically more memory-efficient if the characters can be
generated based on the value. When the bar graph is horizontal, a LOOKUP command is
useful for storing binary values that correspond to the number of columns that will have
black pixels in a given custom character. For vertical graphs, bits can be shifted into a
variable. In either case, subroutines can examine the bits in a variable, then darken pixels
in a certain number of rows or columns in a character.

Questions

1. What part of DATA directives makes it possible to find the starting address of a
character definition?

2. How do programs in this chapter tell the Def_Cust_Char subroutine which
character to define and where to find the character definition? How do you
specify a character location for the Disp_Cust_Char subroutine? If you want to
display two different custom characters at the same time, can you use the same
custom character definition? Why?

3. How does HorizBarGraph.bs2 store information about which columns in a
custom character should have black or white pixels?

4. Why can you use just one byte instead of eight to define a custom character with
certain columns black?

5. What does the instruction IF rowMap.LOWBIT(index) = 1 THEN... do in
TestVerticalBars.bs2?

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 295

6. Why can you use just one byte instead of eight to define a custom character with
certain columns black?

7. What does the instruction IF rowMap.LOWBIT(index) = 1 THEN... do in the
program TestVerticalBars.bs2?

Exercises

1. Write a custom character DATA directive for a character with all horizontal
stripes.

2. Derive the value 1625 in the command value = (x MIN 1875 MAX 3125) -
1875 ** 1625 + 1.

Projects

1. Modify PingBarGraph.bs2 so that it displays the centimeter distance
measurement on the bottom line.

2. Modify TwoAxisBarTiltDisplay.bs2 so that it displays bars that correspond to
tilt angle. Remember that tilt angle is a function of the gravity sensed by each of
the accelerometer's axes. Hint: Use example code from Chapter 3, Activity #6
for tilt angle calculations.

Page 296 · Smart Sensors and Applications

Solutions

Q1. The Symbol name.
Q2. The programs have to set two variables before making the Def_Cust_Char

subroutine call: custChar and charBase. The custChar variable should
store the value the program will use to tell the LCD to display the custom
character. The LCD’s custom character definitions can be a value from 0 to
7, so custChar has to fall in that range. The custom character’s DATA
directive Symbol name has to be stored in the charBase variable. Since
variable = SymbolName stores the EEPROM address of the first byte in
a DATA directive defined by SymbolName into variable, it makes it possible
to pass the starting address of a custom character’s DATA directive to the
Def_Cust_Char subroutine.

Q3. Set the value of the cursor and line variables before calling the
subroutine. The Disp_Cust_Char routine will position the cursor using
these two variables before telling the LCD to display the custom character
at that location.

Q4. No, because all instances of the same custom character currently displayed
by the LCD will be updated as soon as the character definition is updated.

Q5. The dotLine variable ends up storing one of five values: %00000,
%10000, %11000, %11100, or %11110. Each digit corresponds to one of
the five vertical columns of pixels in a custom character. If the value is 1,
the pixels in that column will be set to black. If it’s 0, they will be left
white.

Q6. Each of the eight rows in the custom character definition will have the same
pattern, so the program only has to send the same row byte eight times to
define each row of the custom character.

Q7. When the IF…THEN condition evaluates to 1, the pixels for the row are set
black with SEROUT 14, 84, [%11111]; otherwise, they are set white with
SEROUT 14, 84, [%00000].

E1. Example solution:

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 297

Stripes DATA %11111, ' * * * * *
 %00000, '
 %11111, ' * * * * *
 %00000, '
 %11111, ' * * * * *
 %00000, '
 %11111, ' * * * * *
 %00000 '

E2. The goal of the expression value = (x MIN 1875 MAX 3125) - 1875 **
1625 + 1 in Activity #3 is to scale the x-axis accelerometer value, which could
be anywhere from 1875 to 3125, to a value from 1 to 31. This will pick one of
31 possible vertical bar graph possibilities for the Bar_Graph_H_V subroutine.
By the time the ** operator is reached, 1875 has already been subtracted, so the
range is 0 to 1250 (1251 input scale elements), and we want to scale that to a
range of 1 to 31 (31 output scale elements). From Chapter 3, Activity #3, we
know that ** ScaleConstant = Int[65536 × (output scale elements ÷ (input scale
elements – 1))]. So, it’s Int[65536 × (31 ÷ (1251 – 1))] = Int[65536 × (31 ÷
1250)] = Int[65536 × 0.0248] = Int[1625.2928] = 1625.

P1. Example solution – modified main routine from PingBarGraph.bs2.

' -----[Main Routine]--

DO ' Main loop

 PULSOUT 15, 5
 PULSIN 15, 1, time

 cmDistance = CmConstant ** time

 DEBUG HOME, DEC3 cmDistance, " cm"

 value = cmDistance

 GOSUB Bar_Graph ' Display as bar graph

 SEROUT 14, 84, [Line1, DEC4 value, ' Display cm measurement
 " cm"] ' on Line 1

 PAUSE 100

LOOP ' Repeat main loop

Page 298 · Smart Sensors and Applications

P2. Example solution – See comments in the title section for how this program was
constructed from earlier example programs and calculations explained in the
text:

' -----[Title]--
' Smart Sensors and Applications - Ch7Proj2.bs2
' Displays a character that shifts both vertically and horizontally based
' on the MX2125's tilt angle in degrees. This program is a combination of
' HorizontalTilt.bs2 from Chapter 3, Activity #6 and TwoAxisBarTiltDisplay.bs2
' from Chapter 7, Activity #3. The x-axis measurement had to be changed from
' -90 to +90 degrees to a value from 1 to 31 using the ** scale constant
' equation. Likewise, the -90 to +90 degree y-axis measurement had to be
' changed to a value from 0 to 16. The calculations are commented and shown
' in the main routine just above their use with the ** operators.

' {$STAMP BS2} ' Target device = BASIC Stamp 2
' {$PBASIC 2.5} ' Language = PBASIC 2.5

' -----[I/O Pins]---

LcdPin PIN 14 ' I/O pin connected to LCD's RX

' -----[Constants]--

T9600 CON 84 ' True, 8-bits, no parity, 9600

LcdCls CON 12 ' Form feed -> clear screen
LcdCr CON 13 ' Carriage return
LcdOff CON 21 ' Turns display off
LcdOn CON 22 ' Turns display on
Line0 CON 128 ' Line 0, character 0
Line1 CON 148 ' Line 1, character 0
Define CON 248 ' Address defines cust char 0
Negative CON 1 ' Sign - .bit15 of Word variables
Positive CON 0

' -----[Variables]--

custChar VAR Byte ' Custom character selector
index VAR Nib ' Eeprom index variable
rowMap VAR Byte ' 5-pixel dotted line
cursor VAR Byte ' Cursor placement
value VAR Byte ' Value to be graphed
line VAR Byte ' Line0 or Line1
x VAR Word
y VAR Word
sine VAR Word ' sine in circle r = 127
side VAR Word ' trig subroutine variable
angle VAR Word ' result angle - degrees
sign VAR Bit ' Sign bit

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 299

' -----[Initialization]---

PAUSE 100 ' Debounce power supply
SEROUT LcdPin, T9600, [LcdOn, LcdCls] ' Initialize LCD
PAUSE 5 ' 5 ms delay for clearing display

' -----[Main Routine]---

DO ' Main loop

 PULSIN 6, 1, x
 PULSIN 7, 1, y

 x = (x MIN 1875 MAX 3125) - 1875 ** 13369 - 127
 y = (y MIN 1875 MAX 3125) - 1875 ** 13369 - 127

 side = x
 GOSUB Arcsine
 ' Int[65536 * (31 / (181 - 1))] = 11286
 value = angle + 90 ** 11286 + 1

 side = y
 GOSUB Arcsine
 ' Int[65536 * (17 / (181 - 1))] = 6189
 cursor = 16 - (angle + 90 ** 6189)

 GOSUB Bar_Graph_H_V ' Call Bar_Graph_H_V

LOOP ' Repeat main loop

' -----[Subroutines - Bar_Graph_H_V]---------------------------------------

' Defines and displays two axis bar graph characters based on the value of
' the cursor (0 to 16) and value (1 to 31). Calls Def_Vert_Bar_Char, and
' Horizontal_Placement.

Bar_Graph_H_V:

 SEROUT 14, 84, [LcdCls] ' Clear previous plot
 PAUSE 5 ' 5 ms delay for clearing display

 ' Decide whether to display on Line 0 or Line 1.
 IF value >= 16 THEN line = Line0 ELSE Line = Line1

 GOSUB Def_Vert_Bar_Char ' Define custom character
 GOSUB Horizontal_Placement

 IF value = 16 THEN ' Special case: value = 16

Page 300 · Smart Sensors and Applications

 value = 1 ' Line 0 display
 custChar = 2
 GOSUB Def_Vert_Bar_Char
 line = Line0
 GOSUB Horizontal_Placement

 value = 15 ' Line 1 Display
 custChar = 3
 GOSUB Def_Vert_Bar_Char
 line = Line1
 GOSUB Horizontal_Placement

 value = 16 ' Restore value

 ENDIF

 RETURN

' -----[Subroutine - Def_Vert_Bar_Char]-------------------------------------

' Defines a vertical bar graph character based on the value variable
' (0 to 15) and the custChar variable, which selects the Parallax Serial
' LCD's custom characters between 0 and 7.

Def_Vert_Bar_Char:

 ' Start define custom character
 SEROUT LcdPin, T9600,
 [Define + custChar]

 ' Select a row map for the custom character based on value.
 rowMap = %1111111100000000 >> (value & %1111)

 ' Send 8 bytes, each defining a dotted row in the custom character. Each
 ' row is determined by examining a bit in the rowMap variable, and then
 ' sending %11111 if the bit is 1, or %00000 if the bit is 0.
 FOR index = 0 TO 7 ' Repeat 7 times, index counts
 IF rowMap.LOWBIT(index) = 1 THEN ' Examine next bit in rowMap
 SEROUT 14, 84, [%11111] ' If 1, send %11111
 ELSE
 SEROUT 14, 84, [%00000] ' Otherwise, send %00000
 ENDIF
 NEXT
 ' Return from subroutine.
 RETURN

' -----[Subroutines - Horizontal_Placement]---------------------------------

' Places the vertical bar graph at one of the Parallax 2X16 LCD's sixteen
' vertical columns. The cursor variable can set the horizontal location to

Chapter 7: LCD Bar Graphs for Distance and Tilt · Page 301

' values between 0 and 16, with 8 the center. Calls Disp_Custom_Char.

Horizontal_Placement:

 SELECT cursor ' Cursor 0 to 7, no changes
 CASE 0 TO 7
 GOSUB Disp_Cust_Char
 CASE 8 ' Cursor 8, display at 7 & 8
 cursor = 7
 GOSUB Disp_Cust_Char
 cursor = 8
 GOSUB Disp_Cust_Char
 CASE 9 TO 16 ' Cursor 9 to 16, display 1 left
 cursor = cursor - 1
 GOSUB Disp_Cust_Char
 cursor = cursor + 1
 ENDSELECT

 RETURN

' -----[Subroutines - Disp_Cust_Char]---------------------------------------

' This subroutine displays a custom character. The line variable can
' be set to either Line0 or Line1, and the cursor variable can be set
' to a value between 0 and 15. The custChar variable selects one of the
' LCD's custom characters and should be set to a value between 0 and 7.

Disp_Cust_Char:

 SEROUT LcdPin, T9600, ' Print custom character
 [line + cursor, custChar]
 RETURN

' -----[Subroutine - Arcsine]---

' This subroutine calculates arcsine based on the y coordinate on a circle
' of radius 127. Set the side variable equal to your y coordinate before
' calling this subroutine.

Arcsine: ' Inverse sine subroutine
 GOSUB Arccosine ' Get inverse cosine
 angle = 90 - angle ' sin(angle) = cos(90 - angle)
 RETURN

' -----[Subroutine - Arccosine]---

' This subroutine calculates arccosine based on the x coordinate on a circle
' of radius 127. Set the side variable equal to your x coordinate before
' calling this subroutine.

Arccosine: ' Inverse cosine subroutine

Page 302 · Smart Sensors and Applications

 sign = side.BIT15 ' Save sign of side
 side = ABS(side) ' Evaluate positive side
 angle = 63 - (side / 2) ' Initial angle approximation
 DO ' Successive approximation loop
 IF (COS angle <= side) THEN EXIT ' Done when COS angle <= side
 angle = angle + 1 ' Keep increasing angle
 LOOP
 angle = angle */ 361 ' Convert brads to degrees
 IF sign = Negative THEN angle = 180 - angle' Adjust if sign is negative.
 RETURN

Appendix A: ASCII Chart · Page 303

Appendix A: ASCII Chart

ASCII Chart (first 128 characters)
Dec Hex Char Name / Function Dec Hex Char Dec Hex Char Dec Hex Char

0 00 NUL Null 32 20 space 64 40 @ 96 60 `
1 01 SOH Start Of Heading 33 21 ! 65 41 A 97 61 a
2 02 STX Start Of Text 34 22 " 66 42 B 98 62 b
3 03 ETX End Of Text 35 23 # 67 43 C 99 63 c
4 04 EOT End Of Transmit 36 24 $ 68 44 D 100 64 d
5 05 ENQ Enquiry 37 25 % 69 45 E 101 65 e
6 06 ACK Acknowledge 38 26 & 70 46 F 102 66 f
7 07 BEL Bell 39 27 ' 71 47 G 103 67 g
8 08 BS Backspace 40 28 (72 48 H 104 68 h
9 09 HT Horizontal Tab 41 29) 73 49 I 105 69 i
10 0A LF Line Feed 42 2A * 74 4A J 106 6A j
11 0B VT Vertical Tab 43 2B + 75 4B K 107 6B k
12 0C FF Form Feed 44 2C , 76 4C L 108 6C l
13 0D CR Carriage Return 45 2D - 77 4D M 109 6D m
14 0E SO Shift Out 46 2E . 78 4E N 110 6E n
15 0F SI Shift In 47 2F / 79 4F O 111 6F o
16 10 DLE Data Line Escape 48 30 0 80 50 P 112 70 p
17 11 DC1 Device Control 1 49 31 1 81 51 Q 113 71 q
18 12 DC2 Device Control 2 50 32 2 82 52 R 114 72 r
19 13 DC3 Device Control 3 51 33 3 83 53 S 115 73 s
20 14 DC4 Device Control 4 52 34 4 84 54 T 116 74 t
21 15 NAK Non Acknowledge 53 35 5 85 55 U 117 75 u
22 16 SYN Synchronous Idle 54 36 6 86 56 V 118 76 v
23 17 ETB End Transmit Block 55 37 7 87 57 W 119 77 w
24 18 CAN Cancel 56 38 8 88 58 X 120 78 x
25 19 EM End Of Medium 57 39 9 89 59 Y 121 79 y
26 1A SUB Substitute 58 3A : 90 5A Z 122 7A z
27 1B ESC Escape 59 3B ; 91 5B [123 7B {
28 1C FS File Separator 60 3C < 92 5C \ 124 7C |
29 1D GS Group Separator 61 3D = 93 5D] 125 7D }
30 1E RS Record Separator 62 3E > 94 5E ^ 126 7E ~
31 1F US Unit Separator 63 3F ? 95 5F _ 127 7F delete

Note that the control codes (lowest 32 ASCII characters) have no standardized screen
symbols. The characters listed for them are just names used in referring to these codes.
For example, to move the cursor to the beginning of the next line of a printer or terminal
often requires sending line feed and carriage return codes. This common pair is referred
to as "LF/CR."

Page 304 · Smart Sensors and Applications

Appendix B: Parallax Serial LCD Documentation · Page 305

Appendix B: Parallax Serial LCD Documentation

599 Menlo Drive, Suite 100
Rocklin, California 95765, USA
Office: (916) 624-8333
Fax: (916) 624-8003

General: info@parallax.com
Technical: support@parallax.com
Web Site: www.parallax.com
Educational: www.stampsinclass.com

Version 2.0

Parallax Serial LCD
2 rows x 16 characters Non-backlit (#27976)
2 rows x 16 characters Backlit (#27977)
4 rows x 20 characters Backlit (#27979)

Introduction

The Parallax Serial LCDs are very functional, low-cost LCDs that can be easily
controlled by a BASIC Stamp® microcontroller. The LCD displays are either two rows
by 16 characters or four rows by 16 characters, and provide basic text wrapping so that
your text looks right on the display. In addition, the Serial LCDs also provide you with
full control over all of their advanced LCD features, allowing you to move the cursor
anywhere on the display with a single instruction and turn the display on and off in any
configuration. They support the same visible characters as the BASIC Stamp Editor's
Debug Terminal (ASCII Dec 32-127). In addition, you may define up to eight of your
own custom characters to display anywhere on the LCD.

Application Ideas

What can you do with a Parallax Serial LCD? While there are many possibilities, here's a
small list of ideas that can be realized with a Serial LCD and the Parallax BASIC Stamp:

• A professional-looking text user interface on any microcontroller application
• Easy-to-implement serial debugging without a PC
• Real-time sensor data output on autonomous robotics applications (Boe-Bot®,

Toddler®, SumoBot®)

Page 306 · Smart Sensors and Applications

LCD Extension Cables

The Parallax Serial LCDs are compatible with our 14-inch LCD Extension Cables, part
#805-00012, sold separately from www.parallax.com. This 3-pin female-female cable
comes with a 3-pin header so you may conveniently connect your LCD to your
breadboard projects.

Sample Code

Demonstration BASIC Stamp software files may be downloaded from:
http://www.parallax.com/detail.asp?product_id=27976
http://www.parallax.com/detail.asp?product_id=27977
http://www.parallax.com/detail.asp?product_id=27979

Features

• Displays ASCII character set directly to the display
• Wraps to the next line automatically for easy display of text strings
• Works at 2400, 9600, and 19,200 baud
• Moves the cursor anywhere on the display with a single command
• Clears the whole display with a single command
• Allows you to define up to eight custom characters

Connections

Connecting the Serial LCD to the BASIC Stamp is a straightforward operation, requiring
just three IO pins. See Figure B-1 and B-2 for electrical connection details. See Figures
B-3 and B-4 on the following pages for size and mechanical mounting details.

Figure B-1

Serial LCD
connections for
Rev D and earlier
displays.

Appendix B: Parallax Serial LCD Documentation · Page 307

Figure B-2

Serial LCD
connections for
Rev E and later
displays.

The table below lists the voltage and current requirements of the Serial LCD, with the
backlight turned on and off. Since the current draw in either case exceeds the capabilities
of all of the BASIC Stamp modules, you should power the Serial LCD from an external 5
V power supply. Make sure the power supply has an adequate current rating to power the
Serial LCD and the BASIC Stamp.

Serial LCD State Voltage Current
All Models Backlight off 5 VDC 20 mA

27977/27979 Backlight on 5 VDC 80 mA

Figure B-3 Size and Mounting Specifications for Models 27976, 27977

Page 308 · Smart Sensors and Applications

Figure B-4 Size and Mounting Specifications for Model 27979

Technical Notes
Characteristic Description

LCD display type STN, YG, positive, transflective
Viewing direction 6H
Backlight YG LED
Operating temperature -4°F~158°F (-20°C~70°C)
Storage temperature -22°F~176°F (-30°C~80°C)
Dimension tolerance ±.02” (.5mm)

Baud Rate Setup

After connecting the Serial LCD, you will need to select the baud rate at which you are
going to send it data. You have three choices: 2400, 9600, and 19,200 baud. To set the
baud rate, move the dip switches on the back of the LCD into the correct positions
according to the table next to the switches, which is also repeated below:

MODE SW1 SW2
Test OFF OFF
2,400 ON OFF
9,600 OFF ON
19.200 ON ON

Appendix B: Parallax Serial LCD Documentation · Page 309

As you can see from the table, there is also a fourth choice called Test. Now that you’ve
connected the power, use this Test mode to confirm that the power and ground to the
LCD are hooked up correctly before you send it any data. Move the dip switches to the
Test setting and turn on the power. The LCD display should turn on with the backlight
on (models 27977, 27979) and display the following text:

Parallax, Inc.
www.parallax.com

If you don’t see the text at first, try adjusting the LCD contrast by turning the pot labeled
“Increase Contrast” with a screwdriver. Turn it in the direction of the arrow to make the
characters show up more clearly. If you still don’t see the characters, go back and check
your electrical connections and try again. Once you’ve successfully completed test
mode, move the dip switches to the correct positions to select the baud rate you want to
use for your application.

Displaying Text

Now that the LCD is set up, it’s time to start sending text to the display. To display a
character of text on the Serial LCD, simply send the ASCII code of that character to the
Serial LCD over the serial port at the correct baud rate.

When a character is received, the Serial LCD displays that character at the current cursor
position and then moves the cursor one position to the right. When you first turn on the
LCD, the cursor is in the leftmost position on the top line, as you might expect. The short
bar on the bottom of the character shows where the cursor is positioned currently.

Once you’ve sent a full line characters to the LCD, you will notice that the cursor
automatically wraps around to the leftmost position of the second line, just like the text in
a book. The text will wrap like this at the end of every line, with the end of the bottom
line wrapping back around to the top line of the LCD. The text will never “run off” the
display; you’ll always see all of the characters you send.

Try the following code on your BASIC Stamp 2 to send a text string to the LCD display.
First, set the baud rate on your Serial LCD to 19,200. Then, load the code below into
your BASIC Stamp 2 and run it. You will see the text string show up and wrap to the
second line of the display.

Page 310 · Smart Sensors and Applications

In all of your Serial LCD code, you should pause for 100 ms at start-up to give time for
the Serial LCD to initialize. You should also set the serial port pin on the BASIC Stamp
to HIGH before the 100 ms start-up delay, as this is the normal state of a serial port when
it isn’t sending any data.

' {$STAMP BS2}

TxPin CON 0
Baud19200 CON 32

 HIGH TxPin ' Set pin high to be a serial port
 PAUSE 100 ' Pause for Serial LCD to initialize
 SEROUT TxPin, Baud19200, ["Hello, this text will wrap."]

Moving the Cursor

When you send a character to the Serial LCD, it always displays at the current cursor
position. There are a few different ways to move the cursor on the Serial LCD display.
After each character you send, the cursor automatically moves over one position. Along
with this, there is a standard set of cursor move commands including Backspace, Carriage
Return, and Line Feed.

The Backspace/Left command (Dec 8) moves the cursor one place to the left and the
Right command (Dec 9) moves the cursor one place to the right. These can be useful for
moving the cursor around to overwrite existing text. These commands wrap to the next
line of the display, if necessary. The Line Feed command (Dec 10) moves the cursor to
the next line of the display without changing the horizontal position of the cursor. The
Carriage Return command (Dec 13) also moves the cursor to the next line, but it moves
the cursor to the leftmost position on that line as well. The Form Feed command (Dec
12) clears the entire display and moves the cursor to the leftmost position on Line 0, just
like when you first turn on the display. You will need to pause for 5mS in your code
after sending the Form Feed command, to give the Serial LCD time to clear the display.
Except for Form Feed, none of these move commands affects the characters on the
display.

There are also direct move commands that you can use to move the cursor to any position
on the display with a single command. The commands in the range Dec 128 to 143 and
Dec 148 to 163 move the cursor to the 16 different positions on each of the two lines of

Appendix B: Parallax Serial LCD Documentation · Page 311

the model 27976 and 27977 LCDs. The commands in the range Dec 128 to 207 move the
cursor to the 20 different positions on each of the four lines of the model 27979 LCD.

Controlling the Display

You also have control over the various display modes of the Serial LCD. The display-off
command (Dec 21) turns off the display so that all of the characters disappear. The
characters aren’t erased from the display, though, and you can even keep writing new
characters to the display when it is turned off. A trick to make a lot of text show up all at
once, even at a slow baud rate, is to turn off the display and then send all of your text.
Then, when you turn the display on again, all of the text appears instantly.

The display-on commands (DEC 22 to 25) turn the display back on and also control
whether you want to display the cursor and/or make the cursor character blink. The
cursor is the short bar that shows up below the character at the current cursor position.
The blink option makes that character blink on and off repeatedly. You can turn the
cursor and blink options on or off, in any combination, as listed in the command set table.
You can change the cursor and blink mode even if the display is already on; you don’t
need to turn it off and then back on again.

With models 27977 and 27979, you can also control the backlight of the display. The
backlight lights up the display so that it is easier to see in the dark. There are commands
to turn the backlight on (Dec 17) and off (Dec 18).

Custom Characters

The Serial LCD has the capability to store up to eight user-defined custom characters.
The custom characters are stored in RAM and so they need to be redefined if you turn off
the power. You can display the custom characters by sending the commands Dec 0 to 7,
as shown in the command set table. The custom character will display at the current
cursor position.

The custom characters are five pixels wide by eight pixels high. Each of the characters is
stored as a series of eight data bytes where the low five bits of each byte represent a row
of pixels in the character. The high three bits of each byte are ignored. A bit value of
one turns that pixel on (i.e. makes it black). The bottom row of pixels is often left blank
(all zeros) to make it easier to see the cursor.

Page 312 · Smart Sensors and Applications

To define a custom character, you will send a total of 9 bytes to the Serial LCD. The first
byte needs to be a valid define-custom-character command (Dec 248 to 255) and must be
followed by eight data bytes that define the pixels of the character. The Serial LCD will
always use the next eight bytes it receives to set the pixels of the character. The data
bytes define the character starting at the topmost row of pixels, as shown in the example
code.

Define a custom character using the code example below. First, set the baud rate on your
Serial LCD to 19,200. Then, load the code below into your BASIC Stamp 2 and run it.
You will see a diamond character appear on the screen.

' {$STAMP BS2}

TxPin CON 0
Baud19200 CON 32

 HIGH TxPin ' Set pin high to be a serial port
 PAUSE 100 ' Pause for Serial LCD to initialize

 SEROUT TxPin, Baud19200, [250] ' Define Custom Character 2
 ' Now send the eight data bytes
 SEROUT TxPin, Baud19200, [0] ' 0 = %00000
 SEROUT TxPin, Baud19200, [4] ' 4 = %00100 *
 SEROUT TxPin, Baud19200, [14] ' 14 = %01110 * * *
 SEROUT TxPin, Baud19200, [31] ' 31 = %11111 * * * * *
 SEROUT TxPin, Baud19200, [14] ' 14 = %01110 * * *
 SEROUT TxPin, Baud19200, [4] ' 4 = %00100 *
 SEROUT TxPin, Baud19200, [0] ' 0 = %00000
 SEROUT TxPin, Baud19200, [0] ' 0 = %00000
 SEROUT TxPin, Baud19200, [2] ' Display the new Custom Character 2

Command Set

The tables below list all of the valid Serial LCD commands. Commands marked as N/A
are invalid and are ignored. The lines of the LCD display are numbered starting from 0,
with Line 0 being the top line. The character positions on each line are numbered starting
from 0, with position 0 being the leftmost position on the line.

Appendix B: Parallax Serial LCD Documentation · Page 313

Dec Hex Action
0 00 Display Custom Character 0
1 01 Display Custom Character 1
2 02 Display Custom Character 2
3 03 Display Custom Character 3
4 04 Display Custom Character 4
5 05 Display Custom Character 5
6 06 Display Custom Character 6
7 07 Display Custom Character 7

8 08 Backspace / Left - The cursor is moved one position to the left. The command
doesn’t erase the character.

9 09 Right - The cursor is moved one position to the right. The command doesn’t erase
the character.

10 0A
Line Feed - The cursor is moved down one line. For the two line LCD model, if on
line 0 it goes to line 1. If on line 1, it wraps around to line 0. The horizontal position
remains the same.

11 0B N/A

12 0C Form Feed - The cursor is moved to position 0 on line 0 and the entire display is
cleared. Users must pause 5mS after this command.

13 0D Carriage Return – For the two-line LCD models, if on line 0 the cursor is moved to
position 0 on line 1. If on line 1, it wraps around to position 0 on line 0.

14 - 16 0E - 10 N/A
17 11 Turn backlight on (only on models 27977, 27979)
18 12 Turn backlight off (Default)
19 - 20 13 - 14 N/A
21 15 Turn the display off
22 16 Turn the display on, with cursor off and no blink
23 17 Turn the display on, with cursor off and character blink
24 18 Turn the display on, with cursor on and no blink (Default)
25 19 Turn the display on, with cursor on and character blink
26 - 31 1A - 1F N/A
32 - 127 20 - 7F Display ASCII characters. See the ASCII character set table.
128 80 Move cursor to line 0, position 0
129 81 Move cursor to line 0, position 1
130 82 Move cursor to line 0, position 2
131 83 Move cursor to line 0, position 3
132 84 Move cursor to line 0, position 4
133 85 Move cursor to line 0, position 5
134 86 Move cursor to line 0, position 6

Page 314 · Smart Sensors and Applications

Dec Hex Action
135 87 Move cursor to line 0, position 7
136 88 Move cursor to line 0, position 8
137 89 Move cursor to line 0, position 9
138 8A Move cursor to line 0, position 10
139 8B Move cursor to line 0, position 11
140 8C Move cursor to line 0, position 12
141 8D Move cursor to line 0, position 13
142 8E Move cursor to line 0, position 14
143 8F Move cursor to line 0, position 15
144 90 Move cursor to line 0, position 16 (only on model 27979)
145 91 Move cursor to line 0, position 17 (only on model 27979)
146 92 Move cursor to line 0, position 18 (only on model 27979)
147 93 Move cursor to line 0, position 19 (only on model 27979)
148 94 Move cursor to line 1, position 0
149 95 Move cursor to line 1, position 1
150 96 Move cursor to line 1, position 2
151 97 Move cursor to line 1, position 3
152 98 Move cursor to line 1, position 4
153 99 Move cursor to line 1, position 5
154 9A Move cursor to line 1, position 6
155 9B Move cursor to line 1, position 7
156 9C Move cursor to line 1, position 8
157 9D Move cursor to line 1, position 9
158 9E Move cursor to line 1, position 10
159 9F Move cursor to line 1, position 11
160 A0 Move cursor to line 1, position 12
161 A1 Move cursor to line 1, position 13
162 A2 Move cursor to line 1, position 14
163 A3 Move cursor to line 1, position 15
164 A4 Move cursor to line 1, position 16 (only on model 27979)
165 A5 Move cursor to line 1, position 17 (only on model 27979)
166 A6 Move cursor to line 1, position 18 (only on model 27979)
167 A7 Move cursor to line 1, position 19 (only on model 27979)
168 A8 Move cursor to line 2, position 0 (only on model 27979)
169 A9 Move cursor to line 2, position 1 (only on model 27979)
170 AA Move cursor to line 2, position 2 (only on model 27979)
171 AB Move cursor to line 2, position 3 (only on model 27979)
172 AC Move cursor to line 2, position 4 (only on model 27979)
173 AD Move cursor to line 2, position 5 (only on model 27979)
174 AE Move cursor to line 2, position 6 (only on model 27979)
175 AF Move cursor to line 2, position 7 (only on model 27979)
176 B0 Move cursor to line 2, position 8 (only on model 27979)
177 B1 Move cursor to line 2, position 9 (only on model 27979)
178 B2 Move cursor to line 2, position 10 (only on model 27979)
179 B3 Move cursor to line 2, position 11 (only on model 27979)
180 B4 Move cursor to line 2, position 12 (only on model 27979)

Appendix B: Parallax Serial LCD Documentation · Page 315

Dec Hex Action
181 B5 Move cursor to line 2, position 13 (only on model 27979)
182 B6 Move cursor to line 2, position 14 (only on model 27979)
183 B7 Move cursor to line 2, position 15 (only on model 27979)
184 B8 Move cursor to line 2, position 16 (only on model 27979)
185 B9 Move cursor to line 2, position 17 (only on model 27979)
186 BA Move cursor to line 2, position 18 (only on model 27979)
187 BB Move cursor to line 2, position 19 (only on model 27979)
188 BC Move cursor to line 3, position 0 (only on model 27979)
189 BD Move cursor to line 3, position 1 (only on model 27979)
190 BE Move cursor to line 3, position 2 (only on model 27979)
191 BF Move cursor to line 3, position 3 (only on model 27979)
192 C0 Move cursor to line 3, position 4 (only on model 27979)
193 C1 Move cursor to line 3, position 5 (only on model 27979)
194 C2 Move cursor to line 3, position 6 (only on model 27979)
195 C3 Move cursor to line 3, position 7 (only on model 27979)
196 C4 Move cursor to line 3, position 8 (only on model 27979)
197 C5 Move cursor to line 3, position 9 (only on model 27979)
198 C6 Move cursor to line 3, position 10 (only on model 27979)
199 C7 Move cursor to line 3, position 11 (only on model 27979)
200 C8 Move cursor to line 3, position 12 (only on model 27979)
201 C9 Move cursor to line 3, position 13 (only on model 27979)
202 CA Move cursor to line 3, position 14 (only on model 27979)
203 CB Move cursor to line 3, position 15 (only on model 27979)
204 CC Move cursor to line 3, position 16 (only on model 27979)
205 CD Move cursor to line 3, position 17 (only on model 27979)
206 CE Move cursor to line 3, position 18 (only on model 27979)
207 CF Move cursor to line 3, position 19 (only on model 27979)
208 - 247 D0 – F7 N/A
248 F8 Define Custom Character 0. Command must be followed by eight data bytes.
249 F9 Define Custom Character 1. Command must be followed by eight data bytes.
250 FA Define Custom Character 2. Command must be followed by eight data bytes.
251 FB Define Custom Character 3. Command must be followed by eight data bytes.
252 FC Define Custom Character 4. Command must be followed by eight data bytes.
253 FD Define Custom Character 5. Command must be followed by eight data bytes.
254 FE Define Custom Character 6. Command must be followed by eight data bytes.
255 FF Define Custom Character 7. Command must be followed by eight data bytes.

Page 316 · Smart Sensors and Applications

ASCII Character Set

The table below shows all of all the ASCII characters as they are displayed on the Serial
LCD. All of the ASCII characters (Dec 32 to 127) are standard ASCII characters, except
for the ‘\’ back-slash (Dec 92) and ‘~’ tilde (Dec 126) characters. For your convenience,
the Serial LCD comes pre-programmed with these characters in the first two custom
characters. So, to display a back-slash, use command Dec 0 and to display a tilde, use
command Dec 1. Of course, you can always overwrite these characters with your own
custom characters.

Appendix C: Hexadecimal Character Definitions · Page 317

Appendix C: Hexadecimal Character Definitions

Lots of LCD application notes and documentation use hexadecimal numbers to instead of
binary numbers to define commands and characters. In PBASIC, printing an exclamation
point is a simple matter of a SEROUT command with an exclamation point in quotes.

SEROUT 14, 84, ["!"]

Not all programming languages for controllers support native use of printable characters
like that. In some cases, mostly in assembly language, the ASCII code for the
exclamation point is used instead. The ASCII code for the exclamation point is 33, and
even in PBASIC, the command SEROUT 14, 84, [33] accomplishes the same task. In
assembly language, hexadecimal values are sometimes the preferred number base
because it makes certain tasks easier. Because of this, lots of LCD documentation lists
their LCD commands as hexadecimal values.

The hexadecimal equivalent of decimal-33 is hexadecimal-21. That's (2 × 16) + 1. You
can use the $ operator to specify that a value is hexadecimal, which would make the
command to display an exclamation point look like this: SEROUT 14, 84, [$21].

Here is an example of a SEROUT command that defines a bar in a bar graph. If fills the
lower half of the character with black pixels and leaves the upper half white:

SEROUT 14, 84, [250,
 %00000, '
 %00000, '
 %00000, '
 %00000, '
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111, ' * * * * *
 %11111] ' * * * * *

Here is an equivalent command using hexadecimal values instead. While it saves a lot of
space, it's still not as easy to understand as defining a custom character with binary
numbers. Be that as it may, you will see PBASIC application programs written this way
from time to time, mainly because of the prevalence of hexadecimal values in LCD
documentation.

SEROUT 14, 84, [250, $00, $00, $00, $00, $1F, $1F, $1F, $1F]

Page 318 · Smart Sensors and Applications

Table 7-1 counts to 15 in decimal, hexadecimal, and binary. In terms of converting from
hexadecimal to binary and back, this table is all you'll need. Reason being, each single
hexadecimal digit corresponds to a group of four binary digits.

Table 7-1: Decimal, Hexadecimal and Binary values
Base

10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Base
16 0 1 2 3 4 5 6 7 8 9 A B C D E F

Base
2

00
00

00
01

00
10

00
11

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

Example: Convert $8FE6 to binary.
Solution: Each hexadecimal digit converts to a group of four binary numbers, so the
binary value can be written with the help of Table 7-1 like this:

 Hexadecimal 8 F E 6
 Binary 1000 1111 1110 0110

 $8FE6 = %1000111111100110

Example: Convert %1100011000001001 to hexadecimal.
Solution: Arrange the binary number into groups of four digits, then use Table 7-1:

 Binary 1100 0110 0000 1001
 Hexadecimal C 6 0 9

 %1100011000001001 = $C609

Example Program: ConvertBinaryToHexadecimal.bs2

Of course, you can also make the BASIC Stamp do it for you. Simply use the % operator
to define the binary number, and then use the HEX formatter in a SEROUT command to
display the value.

√ Try it and see if the LCD agrees with our calculations

Appendix C: Hexadecimal Character Definitions · Page 319

' Smart Sensors and Applications - ConvertBinaryToHexadecimal.bs2

' {$STAMP BS2}
' {$PBASIC 2.5}

PAUSE 250 ' Debounce power supply
SEROUT 14, 84, [22, 12] ' Turn on display and clear
PAUSE 5 ' 5 ms delay for clearing display

SEROUT 14, 84, ["Value = ", HEX %1100011000001001]

END

Your Turn - Converting from Hexadecimal to Binary

Converting from hexadecimal to binary is a matter of using the BIN formatter instead of
HEX, and using the $ operator to tell the BASIC Stamp Editor you are giving it a
hexadecimal (instead of % for binary). If you are converting four hexadecimal digits to
binary, the result will be a 16-digit number. So, the SEROUT command should also be
modified to display the result starting at the beginning of the second line.

√ Comment the existing line of code that performs the binary to hexadecimal
conversion.

SEROUT 14, 84, ["Value = ", 148, BIN $8FE6]

Page 320 · Smart Sensors and Applications

Appendix D: Parts Listing · Page 321

Appendix D: Parts Listing

Computer System Requirements:

• PC running Windows 2000/XP
• An available serial port or USB port. If you need a USB to Serial Adapter, we

recommend Parallax part #800-00030.
• Internet access

Software Requirements:

• BASIC Stamp Editor for Windows v2.0 or higher (Free download from
www.parallax.com)

• Selected Example Programs (Free download from www.parallax.com)
• Microsoft Notepad and Microsoft Excel 2002 or higher (for Chapter 6

acceleration studies)

Hardware Requirements

• One of the following kits that includes a BASIC Stamp 2 programming
platform, plus the appropriate power supply or batteries:
o Board of Education Full Kit Serial (#28102) or USB (#28802)
o Boe-Bot Robot Kit Serial (#28132) or USB (#28832)
o BASIC Stamp Activity Kit* (includes HomeWork Board) (#90005)

• Smart Sensors and Applications Parts & Text (#28029) or Parts Only Kit
(#130-28029)

Household Items:

• Small bar magnet
• Mechanical Compass (for calibrating the Compass Module, Chapter 4)
• RC Car and Controller, with Batteries (for Chapter 6, Activity #5)
• Bicycle Wheel (for Chapter 6, Activity #6)

*All of the activities in this text are compatible with the BASIC Stamp HomeWork Board
as long as you are also using the non-backlit LCD included in the Smart Sensors kit. If
you are using a back-lit LCD, also use a Board of Education to protect your LCD.

Page 322 · Smart Sensors and Applications

Smart Sensors and Applications Parts & Text #28029 (Without book, #130-28029)
Parts and quantities subject to change without notice

Parallax Part # Description Quantity
122-28029 Smart Sensors and Applications book 1
150-01020 220 Ω Resistors, ¼ watt 5% 2

27976 Parallax Serial LCD 2 x 16 non-backlit 1
28015 Ping))) Ultrasonic Distance Sensor 1
28017 Memsic Dual-Axis Accelerometer 1
29123 Hitachi Compass Module 1

451-00303 3-pin male/male header 3
700-00003 4-40 zinc-plated nuts 6
700-00028 1/4” 4-40 pan-head screws 4
710-00006 1/2“ 4-40 pan-head screws 2
713-00005 1/4” round nylon spacer #4 2
720-00011 90-degree universal mounting brackets 4
800-00016 3-inch Jumper Wires, bag of 10 2
805-00002 Servo/LCD Extension Cable 2
900-00001 Piezospeaker 1

You may find that you have some extra electronic components in your kit that are not used in
the Smart Sensors and Applications book. If you want to use these parts to build your own
circuits, please learn about electrolytic capacitors and their safety requirements, below,
before proceeding. WARNING: Incorrect use of electrolytic capacitors can cause them to
explode. Follow the safety guidelines below to avoid possible injury.

Electrolytic capacitors have a positive (+) and a negative (-) terminal. The
voltage at the capacitor’s (+) terminal must always be higher than the voltage at
its (-) terminal. Use the picture (right) to identify the (+) and (-) terminals.
Always make sure to connect these terminals exactly as shown in reliable
circuit diagrams. Connecting one of these capacitors incorrectly can damage it.
In some circuits, connecting this type of capacitor incorrectly and then
connecting power can cause it to rupture or even explode. Vss is the lowest
voltage (0 V) on the Board of Education and BASIC Stamp HomeWork Board.
By connecting the capacitor’s negative terminal to Vss, you ensure that the
polarity across the capacitor’s terminals will always be correct.

SAFETY
Always disconnect power before you build or modify circuits.
Always observe polarity when connecting electrolytic capacitors.
Never reverse the supply polarity on any polar capacitor.
Wear safety goggles or safety glasses when using these capacitors.
Keep your hands and face away from these capacitors when powered.

Capacitor Symbol

+-

10 µF

Index · Page 323

Index

 - A -

acceleration, 65
dynamic, 67

on a circular path, 233

RC car study, 230

skateboard trick study, 240

static, 67

accelerometer
and LCD tilt bubble graph, 188

measuring height, 211

MX2125 design (picture), 67

schematic and wiring diagram, 68

three-axis, 66

uses, 65

animation
flashing text, 11

hourglass custom characters, 24

pixel worm custom characters, 264

scrolling text, 25

sliding window, 26

arccosine, 99
arcsine, 99
arctangent, 85, 92
ASCII chart, 303
ATN, 85, 127
averaging compass measurements, 144

 - B -

bar graph
horizontal, 271

two-axis, 291

vertical, 281

bar magnet, 125
baud rate, 7
baud rate switches for LCD, 6
bicycle distance measurement, 247
binary radians (brads), 86, 101

converting to degrees, 87

 - C -

calipers, 49
capacitor safety, 322
Cartesian coordinates, 174
Celsius to Fahrenheit conversion, 59
clamping input range, 78
CLREOL, 96
collision, 65
compass (drawing), 129
compass module, Hitachi HM55B, 119

calibration, 128

interpreting measurements, 119

magnet cautions, 125

schematic and wiring diagram, 121

sensing axes, 120

testing, 121

computer system requirements, 321

Page 324 · Smart Sensors and Applications

contrast adjustment for LCD, 7
conversion

binary radians to degrees, 87

Fahrenheit to Celsius temperature, 59

hexadecimal to binary numbers, 319

coordinate systems, 174
COS, 101
cosine, 99
counting wheel revolutions, 248
CR, 10
CRSRXY, 8, 168
custom characters

defining, 20

hourglass animation, 24

pixel worm animation, 264

predefined in Parallax Serial LCD, 19

swapping, 261

 - D -

DATA, 180, 213, 223
datalogging, 223
deadband, 249
declination, 124
degree symbol in ASCII, 143
digital thermometer, 1
display coordinates, 174
dynamic acceleration, 67

 - E -

Earth's magnetic field, 124
EEPROM, 214, 262

 - F -

Fahrenheit to Celsius conversion, 59

 - G -

Gelfand, Alan (Ollie), 241
graphic character display, 168
gravity, 65, 83

 - H -

hardware requirements, 321
height measurement with accelerometer,

211
hexadecimal, 22, 317
hexadecimal to binary conversion, 319
HIDs (Human Interface Devices), 167
horizontal bar graph, 271
household items required, 321
hysteresis, 248

 - I -

inclination, 124
incline, 65
input range clamping, 78

 - L -

LCD
and accelerometer tilt bubble graph, 188

baud rate switches, 6

cautions for older models, 4

contrast adjustment, 7

control codes, 9

creating custom characters, 264

defining custom characters, 20

horizontal bar graph, 271

in commercial products, 2

mounting brackets, 153

Parallax Serial LCD Documentation, 305

Index · Page 325

predefined custom characters, 19

schematic and wiring diagram, 5

scrolling text, 25

scrolling text in window, 30

sliding-window, 26

two-axis bar graph, 291

vertical bar graph, 281

liquid crystal display (LCD), 1

 - M -

magnetic field, 124
magnetic field intensity, 124
mechanical compass, 130
MEMS technology, 65
MIN, 196
momentum, 241

 - N -

negative numbers and PBASIC, 80, 174
and MIN operator, 196

negative numbers in PBASIC
division, 145

 - O -

offsetting input values, 76
ollie, 241
oscillations, 242

 - P -

Parts Kit component listing, 322
percent error measurements, 58
piezospeaker circuit, 223
Ping))) sensor, 41

and bar graph LCD display, 271

distance measurements, centimeter, 46

distance measurements, inches, 49

extension cable connections, 51

schematic and wiring diagram, 43

useful limits, 44

Predefined Custom Characters, 20
Programs

BikeWheelAcceleration.bs2, 251

BradsToDegrees.bs2, 90

BubbleGraph.bs2, 191

CalibrateCompass.bs2, 132

ConvertBinaryToHexadecimal.bs2, 318

CrsrxyPlot.bs2, 169

CursorPositions.bs2, 15

DatalogAcceleration.bs2, 226

DatalogYaxisUnscaled.bs2, 244

EepromBackgroundDisplay.bs2, 181

EepromBackgroundRefresh.bs2, 185

EepromDataStorage.bs2, 216

EepromDataStorageWithReset.bs2, 221

EepromPixelWorm.bs2, 264

HorizBarGraph.bs2, 273

HorizontalTilt.bs2, 108

Hourglass.bs2, 23

LcdTestCompass.bs2, 155

LcdTestMessage.bs2, 10

LcdTestNumbers.bs2, 12

LcdTimer.bs2, 17

PingLcdCmAndIn.bs2, 57

Page 326 · Smart Sensors and Applications

PingMeasureCm.bs2, 48

PingMeasureCmAndIn.bs2, 50

PingTest.bs2, 43

PlotXYGraph.bs2, 172

PredfinedCustomCharacters.bs2, 20

SignedNumbers.bs2, 81

SimpleTilt.bs2, 70

SimpleTiltLcd.bs2, 74

SineCosine.bs2, 101

TestArcsine.bs2, 103

TestAtn.bs2, 89

TestCalibratedCompass.bs2, 139

TestCompass.bs2, 122

TestCompassAveraged.bs2, 146

TestScaleOffset.bs2, 78

TestScrollingSubroutine.bs2, 28

TestVerticalBars.bs2, 283

TestWheelCounter.bs2, 249

TiltObstacleGame.bs2, 198

TwoAxisBarDisplay.bs2, 287

VertWheelRotation.bs2, 95

PULSIN, 69

 - R -

RC car acceleration, 230
READ, 213
record and play back, 213
refresh rate, 179
Reset button as program switch, 219
rotation, 65, 85, 92, 229

 - S -

scaling constant, 77
scaling input values, 76
scrolling text, 25
SEROUT, 9, 317
servo port jumper, 150
signed numbers and PBASIC, 174

and MIN operator, 196

signed numbers in PBASIC, 80
division, 145

SIN, 101
sine, 99
skateboard trick acceleration study, 240
sliding-window, 26
software requirements, 321
sound, speed of, and temperature, 58
static acceleration, 67

 - T -

temperature unit conversion, 59
tesla (T), 124
tilt, 65, 98
tilt game controller, 196
tracking character coordinates, 182
two equations with two unknowns, 176
two’s complement, 80, 174, 196
two-axis bar graph, 291

 - U -

unit circle, 100

 - V -

vertial bar graph, 281
vibration, 65

Index · Page 327

 - W -

Wainwright, Danny, 241

worm, custom character for LCD, 264
WRITE, 213

Page 328 · Smart Sensors and Applications

Parts and quantities in the Smart Sensors and Applications Parts Kit (#130-28029) are
subject to change without notice.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

