
Copyright © Nuts&Volts Magazine LCDs & Things September 2009 Page 1 of 11

LCDs & Things
By Jon Williams

For Nuts & Volts Magazine, Column 2, September 2009

It must have been 1994 when I discovered how much I enjoy character LCDs. Like so many others, I got
started thanks to Scott Edwards and his articles here in Nuts & Volts. As soon as I had one LCD working
I was hooked and have used them with the BS1, BS2, and the SX – so why not the Propeller? To my
surprise there wasn’t any particularly good 4-bit LCD code in the Propeller Object Exchange so I pulled
together my own best stuff and ported it. When we combine the LCD with a mini digital joystick we have
a nice little user interface for projects that move beyond the lab.

Perhaps it’s just me, but I find it somewhat humorous that many consider video the standard visual output
for the Propeller multiprocessor. Sure, it’s really cool, but in my mind it’s not very practical for portable
applications – and sometimes I want a project to move off my desk! This is where character-based LCDs
are eminently practical: they come in a variety of sizes, are low-powered, and are really easy to interface.
For my own projects I tend to use the 4-bit interface that is defined by the Hitachi HD44780 specification;
the standard which other vendors seem to follow without question. With a 4-bit buss, three-control lines,
and an output to control the [optional] LCD backlight, we can squeeze the whole works into eight pins
(convenient for micros that have 8-bit ports).

Figure 1 shows the schematic for the 4-bit LCD connections. If it seems like you’re having a case of déjà
vu, don’t worry, this schematic is identical to what we used in the SX28-based intervalometer project
(Nuts & Volts, March 2009). The only difference is the addition of current limiters on the data pins. Why
add these resistors? Well, the Propeller is a 3.3v device and the LCD is a 5v device. When the Propeller
is reading the LCD buss the protection diodes on the Propeller IO pins will clamp the 5v down to a safe
level; these resistors minimize the current through those diodes to protect them.

Before I move on, let me point out something about the LCD called out in the BOM (Hantronix
HDM08216-3-L30S): when I plugged it into the board the backlight turned on. This was odd as there is a
transistor circuit to control the backlight and it should not go on without an explicit command. Well, after I
proved the control pin on the Propeller was fine and that the transistor circuit was okay, I checked
continuity between the cathode (K) pin and ground – they were shorted together on the LCD. I was livid –
the spec sheet for the LCD does not indicate that the backlight cathode is connected to ground!

So, despite what we’ve all been told, I went to bed mad and the next day added a second transistor to the
circuit to create a high-side driver that could switch the anode (A) pin with a high-output from the
Propeller. Then I noticed something on the LCD: a small solder jumper between the cathode connection
and ground. So I heated up the soldering iron, removed it, and BAM!, everything is working fine with the
original circuit. I probably should have noticed that the night before but I was tired – lesson learned.

Copyright © Nuts&Volts Magazine LCDs & Things September 2009 Page 2 of 11

Figure 1: LCD Connections

So… if you use the backlit LCD that I call out in the BOM you’ll want to make sure that the little jumper
(marked J1 on the LCD I have) is removed so that you can control the cathode pin with the single-
transistor circuit shown in Figure 1.

Creating an object for the LCD is really quite easy, and as there are no critical timing or “background”
requirements we can do it all in Spin. Let’s begin with the initialization of the LCD. We’re going to call
this method with the first pin of an eight-pin group and pass the number of columns and rows for the LCD.

pub init(blpin, cols, lines) | okay

 if (blpin > 20)
 okay := inuse := false

 else
 finalize
 bl := blpin
 e := blpin + 1
 rw := blpin + 2
 rs := blpin + 3
 db4 := blpin + 4
 db7 := blpin + 7

 if lookdown(cols:8,16,20,24,32,40)
 lcdx := cols
 else
 lcdx := 16

 if lookdown(lines : 1, 2, 4)
 lcdy := lines

Copyright © Nuts&Volts Magazine LCDs & Things September 2009 Page 3 of 11

 else
 lcdy := 2

 outa[db7..bl] := %0000_0000
 dira[db7..bl] := %1111_1110
 lcdinit
 okay := inuse := true

 return okay

The code starts by checking the backlight control pin to ensure that the group will not collide with the
Propeller I2C and programming pins (28 – 31). If the backlight pin number is okay then the rest of the
pins are defined. Some will notice that I maintained the order used by the BASIC Stamp LCD functions –
some habits die hard!

With the LCD pins defined the columns and lines parameters are validated. As I stated earlier, character
LCDs come in variety of sizes and yet there are standards. As 16x2 LCDs seem to be the most common
these values are used as the default settings if a bad parameter is passed. The lcdx and lcdy variables
will be used by other methods to make sure we don’t attempt to write to an area of the LCD that isn’t
present. With the parameters all set the LCD pins are cleared and all but the backlight control pin are set
to outputs; the backlight pin is left as an input for the time-being (you’ll see why in just a moment).

What we’ve just worked through is the top-level initialization; after the buss pins have been setup then we
call the low-level initialization that puts the LCD into 4-bit mode and makes it ready to use.

pri lcdinit

 waitcnt((20 * MS_001) + cnt)
 outa[db7..bl] := %0011_0000
 blipe
 waitcnt((5 * MS_001) + cnt)
 blipe
 waitcnt((150 * US_001) + cnt)
 blipe
 outa[db7..bl] := %0010_0000
 blipe
 if (lcdy > 1)
 cmd(%0010_1000)
 cmd(%0000_0110)
 dispCtrl := %0000_1100
 cmd(dispCtrl)
 cmd(CLS)

If you’ve ever used an LCD with a BASIC Stamp or the SX then this code should look really familiar; in
fact, I copied my SX/B source code for this method into the Propeller editor and then made the [minor]
adjustments to Spin. Note that this method is declared as private (pri); what this means is that the
method cannot be “seen” outside the LCD file, even by an object declared as an LCD. So, private
methods are for use only within an object file; public (pub) methods may be used internally and
externally.

The initlcd() method follows the conventions for 4-bit LCD initialization that are detailed in the Hitachi
HD44780 data sheet. As you can see we use lcdy to control multi-line initialization. And per usual
practices the LCD is set to auto-increment after a write operation. Finally, we’re initializing and using a
variable called dispCtrl; this will keep track of the display (on or off) and cursor setting (none, underline,
blink, or both) so that we can change either without upsetting the others. The starting value of dispCtrl
turns the display on and the cursor off.

Once the LCD is initialized to 4-bit mode we don’t have to write directly to the buss, we can use the cmd()
method; this is one of two ways to send information to the LCD. This method sends a command (e.g.,

Copyright © Nuts&Volts Magazine LCDs & Things September 2009 Page 4 of 11

clear the LCD, move the cursor, etc.). Another method that we’ll use frequently is called out(); we’ll use
this to write characters. I deliberately named these methods to make the translation of older PBASIC
programs as simple as possible.

There is a small, yet critical difference between the cmd() and out() methods: the status of the RS
(register select) line to the LCD. For a command the RS line must be set to 0, for a character the RS line
must be set to 1.

pub cmd(c)

 waitbusy
 outa[rs] := 0
 wrlcd(c)

pub out(c)

 waitbusy
 outa[rs] := 1
 wrlcd(c)

One of the aspects of LCD interfacing that many programmers give up on is reading the busy flag. We
really should read this flag as this enables us to write a new command or character as soon as the LCD is
ready; inserting an arbitrary delay just slows everything down and reduces throughput. With a 4-bit buss
it takes a little work, but as you’ll see it’s really not too difficult.

pub waitbusy | addr

 dira[db7..db4] := %0000
 outa[rs] := 0
 outa[rw] := 1

 repeat
 outa[e] := 1
 waitcnt((5 * US_001) + cnt)
 addr := ina[db7..db4] << 4
 outa[e] := 0
 waitcnt((5 * US_001) + cnt)
 outa[e] := 1
 waitcnt((5 * US_001) + cnt)
 addr |= ina[db7..db4]
 outa[e] := 0
 while (addr & %1000_0000)

 return (addr & $7F)

The method starts by making the data pins inputs and placing the LCD into command (RS = 0) and read
(RW = 1) mode. We can read one nibble of the cursor address at a time by “blipping” the enable (e) pin.
The high nibble is read first so you see that we have to shift it left by four bits. Then the lower nibble can
be OR’d onto the addr variable; if bit7 of addr is set then the LCD is busy with the last command. The
address scan is embedded a repeat-while loop that will run until the busy flag clears. Should we ever
need to know the address of the cursor that information is returned by this method.

Before I forget, let me point something out regarding the use of waitcnt to do sub-millisecond timing: Spin
is an interpreted language and as fast as it is, the Propeller cannot accept a delay value of less than five
when using the syntax described here (instruction overhead makes the actual delay longer than 5us). I
point this out so that you’re not tempted to shorten the delays after reading an LCD spec sheet. If we get
a waitcnt rollover the delay will go from what we wanted (a few microseconds) to almost a full minute –
yes, it takes that long to run through the 32-bit system counter at 80 MHz.

Copyright © Nuts&Volts Magazine LCDs & Things September 2009 Page 5 of 11

Back to writing to the LCD… when we’ve determined the LCD is not busy we can set the RS line as
required (low for a command, high for a character) and then call the wrlcd() method.

pri wrlcd(b)

 dira[db7..db4] := %1111
 outa[rw] := 0

 outa[db7..db4] := (b & $F0) >> 4
 blipe
 outa[db7..db4] := b & $0F
 blipe

As we’re writing to the LCD the data pins are set as outputs and the LCD to write mode (RW = 0). Again
we have to transfer four bits at a time, starting with the high nibble. After a nibble has been placed on
the LCD data buss it is transferred by blipping the Enable (e) pin.

When you download the files you’ll see that there are a lot of useful methods in the LCD object and as
most are self-explanatory there is no reason to go into detail here. One method I do want to discuss,
though, is called scrollstr(); we can use this to scroll a string through “window” in the LCD.

pub scrollstr(x, y, w, ms, pntr) {
} | okay, p, len

 okay := false

 if (x => 1) & (x =< (lcdx + 1 - w))
 if (y => 1) & (y =< lcdy)
 len := strsize(pntr)
 if (len => w)
 repeat (len - w + 1)
 p := pntr
 moveto(x, y)
 repeat w
 out(byte[p++])
 waitcnt((ms * MS_001) + cnt)
 pntr++
 okay := true

 return okay

We need to pass the column (x) and line (y) that defines the left edge of the scroll window, the width (w),
the delay (in milliseconds) between moves, and a pointer to the string. As you can see the location and
width values are validated before we attempt the scroll; we have to make sure that the defined window
will fit onto the LCD (based on its width) and that we’ve selected a legal line. We also need to ensure that
the string is at least as long as the window.

If everything checks out then a couple nested repeat loops do the work. The outer loop controls how
many scroll events are required; this is based on the width of the scroll window and the length of the
string. Inside that loop a pointer is set to the first character to print, the cursor is moved to the left edge of
the scroll window, then “w” characters are printed to fill the window. After the delay the character pointer
is advanced and the inner loop is run again.

If we want to have a string scroll on cleanly (i.e., start with an empty window) then we need to prefix the
string with spaces, at least as many as the width of the window. Conversely, if we want the string to scroll
off cleanly then we need to append a number of spaces to the string to take care of that. It won’t take
more than a few minutes of play with this method to understand how to take full advantage of it – and

Copyright © Nuts&Volts Magazine LCDs & Things September 2009 Page 6 of 11

remember that pressing F10 in the Propeller IDE downloads very quickly to RAM. And if right-to-left is not
enough, there is a method called rscrollstr() that does the same thing in reverse, i.e., left-to-right.

Green Backlight Control
Nope, I don’t mean green as in the color, I mean green as in energy conservation. The LCD object allows
for setting or clearing the backlight, but these are static controls; the backlight is either on or it’s off.
What if we create a device that uses a backlit LCD that we’re not going to look at all the time – wouldn’t it
be a good idea to kill the backlight when we don’t need it to be operating? You bet, and we can do just
that with a very small Assembly program.

Here’s the whole works:

dat

 org 0

oneshot test osidle, osidle wc
 muxc outa, osmask
 or dira, osmask

 mov ms1timer, MS_001
 add ms1timer, cnt

osloop rdlong ostimer, ospntr wz
 if_z muxc outa, osmask
 if_nz muxnc outa, osmask
 if_nz sub ostimer, #1
 wrlong ostimer, ospntr
 waitcnt ms1timer, MS_001
 jmp #osloop

MS_001 long 0-0

osmask long 0-0
osidle long 0-0
ospntr long 0-0

ostimer res 1
ms1timer res 1

 fit 492

Before I explain the code let me tell you about the variable section. The first thing you probably noticed
are symbols declared as long that have a strange value: 0-0. I don’t know who started this convention
but it is generally accepted among Propeller programmers that this defines a value that will be set or
modified by another instruction.

This is possible because all programs are running in RAM; any piece of data – even instructions – can be
modified on the fly. This is tremendously powerful and tremendously dangerous at the same time if not
handled carefully. In our case we’re going to modify these symbols from a Spin method. Until the PASM
program is launched with cognew it is just data to the Spin program and can be changed at will. Making
the modifications in Spin is a little easier than doing the setup in Assembly, especially when we want to
use fractional values (where division is required) of the system clock frequency.

Here’s the Spin code that sets up the one-shot object parameters and launches it:

pub init(p, idle, ms) | okay

Copyright © Nuts&Volts Magazine LCDs & Things September 2009 Page 7 of 11

 finalize

 if (p => 0) and (p =< 27)
 MS_001 := clkfreq / 1_000
 osmask := 1 << p
 osidle := (idle > 0) & 1
 ospntr := @osDuration

 okay := cog := cognew(@oneshot, 0)+1
 run(ms)

 else
 okay := false

 return okay

We have to pass the pin number, the idle state (0 or 1) and the number of milliseconds for the initial
pulse. If the pin number is legal then we modify parameters that will be used by the PASM program. The
first is MS_001 that is the number of system clock ticks in one millisecond. A bit mask is created for the
pin, the parameter called osidle is set to 0 or 1 and, finally, the pointer to the one-shot timing variable
(which is in the hub) is initialized.

Okay, let’s go look at the PASM section. On entry we test the osidle value which was previously forced to
zero (idle state is low) or one (idle state is high). The reason we’ve forced a non-zero value to one is that
we’re going to use the carry flag to save the idle state. This is accomplished by using test on osidle
against one. The test operator works just like and but it does not affect the destination. When wc is
used with test the carry flag will be set (1) if there is an odd number of bits in the test result. At this point
the carry flag will match the idle state of the one-shot pin: 0 for low, 1 for high.

Next we use muxc to write the value of the carry flag to the output pin which is defined in osmask. With
the idle state set the pin is made an output. Since we won’t use wc in any other instructions the carry flag
will be maintained through the run of the program and we don’t have to retest the idle state. Once you
get used to the idea of having control over the carry and zero flags Propeller Assembly can be quite fun.

The next step is to initialize a one-millisecond timer and then drop into the main loop. The first task is to
read the one-shot timing from the hub. If the time is zero (if_z) we return the pin to its idle state,
otherwise we set it to the active state. If the time is greater than zero (if_nz) then it gets decremented, we
let the one-millisecond timer expire and then we write the timing value back to the hub.

Why bother writing the timing value back to the hub? Well, if we keep the timing variable in one place
then both sides can modify it at will; this allows use to truncate a one-shot command if we want to.

So, how would we use the one-shot control with the LCD? Easy: if a button press is detected (see below)
then we’ll (re)set the one-shot timer. As long as we’re busy with the buttons the backlight will stay lit; with
no input after some pre-determined period (I use five seconds) the backlight will go off and we’ve reduced
current consumption by about 140 milliamps. This is especially useful in battery-powered applications

The Joy of a Joystick
In the December 2007 issue of Nuts & Volts Joe DeMeyer described an intervalometer that used a mini
digital joystick; the stick has four direction switches plus a center switch. I bought one of these little
dudes and it’s really cool so I incorporated it into the LCD UI. With the joystick and one additional
pushbutton we have a flexible way of navigating menus and updating information displayed in the LCD.
Figure 2 shows the schematic for the joystick/button interface. All the inputs are pulled low and when
active read as “1” on the corresponding Propeller pin.

Copyright © Nuts&Volts Magazine LCDs & Things September 2009 Page 8 of 11

Figure 2: Joystick and Button Connections

We all recognize that debouncing switch inputs is a good idea and yet this can take precious time from a
program if done in the foreground. So, let’s create a debouncing program and run it in a separate cog,
shall we?

For flexibility we’re going to pass a mask that defines which pins to scan; a “1” bit in the mask means we’ll
scan that pin, a “0” bit means the pin is ignored. We’ll also pass the debounce timing duration (I tend to
use 25ms), and the logic of the inputs; “1” for active-high (as on the LCD UI board), “0” for active-low (as
on the PPDB).

Here’s the PASM code that handles the debouncing.

dat

 org 0

debounce andn dira, scanmask

 mov dbtimer, SCAN_DELAY
 add dbtimer, cnt

newscan mov scanresult, scanmask
 mov scancount, scantime
 shl scancount, #3

 test scanmode, #1 wz
scan if_nz and scanresult, ina
 if_z andn scanresult, ina
 waitcnt dbtimer, SCAN_DELAY
 djnz scancount, #scan

 wrlong scanresult, scanbits
 jmp #newscan

On entry we ensure the selected pins are inputs, setup a timer and then drop into the scan. The scan
works by initializing the result to the all pins active – easily done by copying the mask into the result.
Then we test the mode and if active high the inputs (ina) are ANDed with the result; any pin still high will
remain a “1” bit in the result – if or until it goes low during the scan. If a pin does go inactive at any point
in the scan the use of AND will cause that bit to stay inactive (0) in the result.

Copyright © Nuts&Volts Magazine LCDs & Things September 2009 Page 9 of 11

If the scan mode is zero then we AND the inverted state of the pins with the result; we’re able to do this
with the (very convenient) andn operator. With the inputs scan out of the way the timer is allowed to
expire and the scan count is decremented. When the scan window is completed the result is written back
to the hub and we start a new scan. How easy is that?

Of course you’ve noticed that the result bits are active-high (“1” means the input is active), even if the
physical pins are wired as active-low. I think this makes the higher level code easier to deal with,
especially when creating masks for individual pins.

There are two methods in the high-level interface of the debounce object; one that returns true if any of
the pins in the mask are active and another that lets us get the state of one or more pins from the
debounced result; both methods will be used in the demo program.

Bi-Color LED Redux
Since the button inputs only require six bits it made sense to pop a bicolor LED onto the board – this
neatly fills out a group of bits and can provide important information that one might miss on the LCD
unless right on top of it. I’ve had a lot of time to work with the bi-color LED and have made some
adjustments.

One of the changes is that it now supports 2- and 3-lead LEDs. The latter usually has a common cathode
for the internal LED chips so completely extinguishing the LED means that both pins must be turned off.
The bigger change is that the PWM aspect is separated for each color chip. This allows us to balance
red and green brightness levels for either style LED, and find the best balance for yellow without having to
dig into the PASM code. Have a look at the new object; I think you’ll like it.

Figure 3 shows the connections for a 3-lead, bi-color LED. If you decide to go with a 2-led type then you
can change one of the resistors to a jumper.

Figure 3: Bicolor LED Connections

Putting It All Together
Okay, we have an LCD object, a one-shot object that’s useful for controlling the LCD backlight, a
debounce object for scanning the joystick and button inputs and, finally, an update of the bi-color LED.
The LCD UI is an integrated module with pre-defined pin connections so it makes sense to wrap these
discrete objects into one master object that we can use in future projects.

Although we use the term “object” Spin is not an OOP language like Java or Python, that is, when we
create a new object from others, the methods from the source objects are not inherited by the new object.
That’s the bad. The good is that we can determine which of the source object methods we want to
expose, can rename them if we like and, of course, we’re free to create new methods from those that
exist in any of the source objects.

For example, you’ll find a cls() method in the lcd_ui object.

Copyright © Nuts&Volts Magazine LCDs & Things September 2009 Page 10 of 11

pub cls

 lcd.cmd(lcd#CLS)

As you can see this is actually a call to the LCD’s cmd() method using the LCD’s CLS constant. We’ll put
this to work in the demo program. As always, I encourage you to experiment with the demo program and
then really put it to use. First up for me is connecting an IR LED to the LCD UI expansion buss and
porting the intervalometer program that I originally wrote for the SX28.

Figure 4: Completed LCD UI

I’m a Gadget Gangster!
If there is a cooler name for a technology-centric web site on the Internet, I haven’t seen it –
www.gadgetganster.com has a great name and really fun stuff. Gadget Gangster is run by a nice guy
named Nick McClanahan who has taken me up on my “Go forth and be prosperous!” call vis-à-vis
projects I create for my columns.

Nick really liked the Propeller Platform and after talking with Ken Gracey at the Propeller Expo in July, it
was decided that Gadget Gangster was a better home for the Propeller Platform kit and future kits
designed for it (like the LCD UI board). Now, this is not to say that Nick is going to make a kit for every
project that appears in this column, but where there’s broad interest in a given circuit he probably will.

Copyright © Nuts&Volts Magazine LCDs & Things September 2009 Page 11 of 11

100 MHz Propeller
Until recently the top speed of the Propeller chip has been 80 MHz. This is derived by using a standard 5
MHz crystal and a PLL setting of 16x. Well, if 80 MHz is good then 100 MHz is better, right? Absolutely!
An enterprising Propeller programmer named Bill Henning has done us all a favor by having custom 6.25
MHz crystals made – this crystal and the 16x PLL setting gives us 100 MHz, a 25% boost in Propeller
speed!

One advanced user who has pushed the Propeller even faster suggests changing the Vcc bypass cap
near the crystal to a 4.7 to 10uF tantalum; this is an easy change and the layout of the Propeller Platform
accommodates this with no trouble. You can buy the crystals directly from Bill’s web site
(www.mikronauts.com), from Parallax, and from Gadget Gangster.

I think that’s about enough, don’t you? Have fun with the LCD UI and until next time, here’s to spinning
and winning with the Propeller.

Bill of Materials
LCD 8x2, backlit Mouser HDM08216L-3-L30S
LED1 Bi-color Mouser 78-TLUV5300
Q1 2N3904 Mouser 610-2N3904
R1 220 Mouser 291-220-RC
R2 220 Mouser 291-220-RC
R3 220 Mouser 291-220-RC
R4 220 Mouser 291-220-RC
R5 220 Mouser 291-220-RC
R6 220 Mouser 291-220-RC
R7 220 Mouser 291-220-RC
R8 220 Mouser 291-220-RC
R9 470 Mouser 291-470-RC
R10 47 Mouser 291-47-RC
R11 4.7K Mouser 291-4.7K-RC
R12 4.7K Mouser 291-4.7K-RC
R13 4.7K Mouser 291-4.7K-RC
R14 4.7K Mouser 291-4.7K-RC
R15 10K Mouser 652-3352T-1-103LF
RN1 10K x 7 Mouser 71-CSC08A01-10K
SW1 4x+1 NO Mouser 688-SKQUCA
SW2 NO Mouser 101-TS6211T3202AC-EV
SW2-CAP black, 12x12mm Mouser 101-0110-EV
X1 0.1 M-STRT Mouser 517-6111TG
X2 0.1 M-STRT Mouser 517-6111TG
X3 0.1 M-STRT Mouser 517-6111TG
X4 0.1 M-STRT Mouser 517-6111TG
X5 0.1 Box Header, 16p Mouser 517-30316-6002
X6 0.1 M-R/A Mouser 517-5111TG
XLCD 0.1 strip socket Mouser 517-974-01-16
PCB ExpressPCB

