
Copyright © Nuts&Volts Magazine Loving LEDs Again July 2009 Page 1 of 10

Loving LEDs Again
By Jon Williams

For Nuts & Volts Magazine, Column 1, July 2009

I often tell those friends that are just getting into microcontrollers that if they can learn to control an LED
they can learn to control just about anything. Now, most of those friends are prop builders and, for the
most part, are just looking for simple on and off control; a blinking LED easily becomes a pneumatic
piston raising and lowering some element of a prop or special effect. I recently used a bicolor LED in an
SX-based product design and it was a big hit – the product, and the use of the LED. With a simple, two-
lead, bi-color (green and red) LED I was able to communicate the state of the machine and our customers
loved it. Program space, however, prevented me from taking the LED control code as far as I wanted to.
Well, with a whole cog at my disposal that is no longer an issue and I am loving LEDs again!

The fact of the matter is that we humans are reasonably trainable (if you’re a girlfriend, housewife, or
mother you’re probably shaking your head in disagreement at the moment, but bear with me). This
statement is especially true when new training is built on established skills or information. For example,
we often use the color green for “go” or “okay”; red means “stop”; yellow means “caution” – of course, all
of this depends on context. In recording devices, green usually means “play” and red means “record.” As
product designers it is in our best interest to take advantage of previously-established training so that our
customers can adapt to the new product more quickly.

The product I mentioned earlier is a digital recorder and playback device designed for prop and
animatronics control. When armed for playback the mode LED is green; when playing a recorded
sequence the LED flashes green; I used motion (blinking) to indicate that the device is active. When a
channel is armed for recording the mode LED is red; when recording is in progess the LED flashes red.
I’m sure this seems terribly obvious as you’re reading it now but how many products have you dealt with
that didn’t use obvious choices like these?

Building an LED Coprocessor
Since the early days of BASIC Stamps we’ve become accustomed to adding application-specific co-
processors to enhance a project; things like servo controllers and serial LCDs – they’re so common now
that we take these things for granted. One way to think of the Propeller is a 32-bit processor with seven
built-in coprocessor engines that we can do with as we please. Neat, huh?

In my SX project the LED control code was part of the ISR so it had to be very trim and this limited the
features I could include to color and basic on-off blinking. What I really want is the ability to control color,
do colorized blinking, and have brightness control of the LED. That’s what we’re going to do with the
Propeller. We’ll start simply and build as we go until we have the full-featured driver.

Copyright © Nuts&Volts Magazine Loving LEDs Again July 2009 Page 2 of 10

The hardware for this project is simple: a resistor and bicolor LED that you probably have in your parts
drawer. You can solder these together for the Propeller Platform or plug them in if you’re using the
Propeller Demo Board or PPDB.

Figure 1: Bicolor LED Schematic

Three Colors from Two
The two-lead, bicolor LED actually has two LED chips inside: green and red, wired back-to-back. This
arrangement allows current to flow through just one element at a time. It turns out that if we reverse
current flow quickly through the bicolor LED it can appear yellow, giving us a third color and, in total, four
states: off, green, red, yellow.

Here’s the rub: green and red LEDs are constructed from different materials and have different forward
voltages. On my LED the green chip had a forward voltage of 1.75v and the red chip had a forward
voltage of 1.56v. With a 220-ohm resistor and a 3.3v output form the Propeller the green LED would get
about 7mA and the red LED would get about 8mA – it’s enough to make a difference and you can clearly
see it when reading the forward voltage with a multimeter.

So what does this mean? Well, it means that we cannot get yellow by simply reversing the current
direction every other cycle. What we’re going to do is construct the code such that we can easily control
the green-to-red cycles ratio to get the best approximation of yellow.

Okay, then, let’s jump into the code. You’ll remember from last time that Propeller assembly code
(PASM) segments are defined in a DAT section of a Spin program. We’ll start with the interface which
lets us define the pin to use for the green anode (red will be green plus one) and the color state for the
LED.

DAT
 org 0

leddriver mov tmp1, par
 rdlong tmp2, tmp1
 mov gMask, #1
 shl gMask, tmp2
 or dira, gMask

 mov rMask, gMask
 shl rMask, #1
 or dira, rMask

 add tmp1, #4
 mov colorAddr, tmp1

The driver starts by copying the cog’s par (parameter) register to tmp1; what we’re going to pass in par is
the address (using @) of the variable that holds the green anode pin number (this is the starting address
of all the parameters we will pass to the driver). With rdlong we can read the pin number from the hub
RAM into the cog variable called tmp2. What we want to do is create a pin mask for the green pin; to do

Copyright © Nuts&Volts Magazine Loving LEDs Again July 2009 Page 3 of 10

that we’ll load gMask with one and then shift left by the pin number in tmp2. To make that pin an output
we’ll or the pin mask onto the dira register as dira controls the pins’ IO direction (one bit = output, zero bit
= input).

In the program we’re going to specify that the red anode pin is the next pin up from green, so creating the
red mask is easy: we copy the gMask into rMask and then shift rMask left by one bit. As with the green
pin we make the red anode pin an output by or-ing the pin mask onto dira.

At this point tmp1 is equal to par which is the address of the green pin variable. The second parameter
for the driver is the color mode. To get the hub address of the color mode variable we can add four (four
bytes per long) to tmp1 and copy that into colorAddr; we’ll use this variable in the program to update the
LED color.

With the driver setup [mostly] out of the way we can get into the main loop. In this version of the driver
we don’t need any specific loop timing but it doesn’t hurt to add it in to support timing functions to come
later. Loop timing in assembly is usually a nightmare of cycle counting but the Propeller relieves us of
that nightmare by including an instruction called waitcnt which takes care of the dirty work.

Remember that all cogs are driven by a common clock and have access to the system counter. In both
Spin and PASM the waitcnt instructions will wait for the system counter to reach a specific value – this
makes precise timing very simple. We start by defining a timer variable and loading it with the number of
counter ticks we want to wait. As the system timer is almost always running at 80,000,000 ticks per
second the delay time will usually be a significant number. Once we’ve loaded the variable with the delay
ticks synchronize it by adding the current value of the system counter.

starttimer mov loopTimer, us010
 add loopTimer, cnt

Here we’re loading the variable called loopTimer with the value stored in us010; this is a predefined value
that you’ll see at the end of the assembly listing.

us010 long 80000000 / 1000000 * 10

At first this may seem odd because it looks like we’re doing long division and multiplication in an
assembly program. We’re not. All PASM programs start as a DAT section in a Spin program and when
launched with cognew are moved to the cog RAM. Since we started in Spin the compiler will resolve
this expression prior to downloading the program.

We could, of course, have stated the value directly but here is a case for writing code that explains itself.
In this case we take the number of system counter ticks in one second and divide by one million to get the
number of ticks in one microsecond. Now we multiply by 10 to get the number of ticks in 10
microseconds. This may at first seem like an arbitrary value but it isn’t. More on that later.

Let’s drop into the main loop. Its purpose is to read the color setting from the hub RAM and then jump to
the handler that sets the LED to that color.

ledloop rdlong color, colorAddr

setled mov tmp1, color
 max tmp1, #3
 add tmp1, #jmpcolor0
 jmp tmp1

jmpcolor0 jmp #ledoff
jmpcolor1 jmp #ledgreen
jmpcolor2 jmp #ledyellow
jmpcolor3 jmp #ledred

Copyright © Nuts&Volts Magazine Loving LEDs Again July 2009 Page 4 of 10

The first part is easy with rdlong; this lets us read a value from the hub RAM into a cog variable. What
follows is the equivalent of a PBASIC or SX/B BRANCH instruction. The color value is copied into tmp1.
Now, tmp1 should be something between zero and three but as good programmers we don’t take
chances and will do a bit of error trapping; in this case we limit the value of tmp1 to three by using the
max instruction.

And now for a little tricky stuff: we add the starting location (cog RAM) of a table of jmp instructions to the
value of tmp1 and then jump to the result. When tmp1 is zero we will end up jumping to ledoff, when
tmp1 is three we will end up jumping to ledred. We could have used cmp (compare) and if_e jmp with
each value, but this version of the code is a little cleaner, especially with long tables. Note that I’ve added
extra labels to the table for clarity.

Okay, lets control the LED – it’s nothing more that setting the direction of current flow (if any) through it.

ledoff andn outa, gMask
 andn outa, rMask
 jmp #loopwait

ledgreen or outa, gMask
 andn outa, rMask
 jmp #loopwait

ledyellow add rgCntr, #1
 cmp rgCntr, #16 wc
 if_b jmp #ledgreen
 mov rgCntr, #0

ledred andn outa, gMask
 or outa, rMask

loopwait waitcnt loopTimer, us010
 jmp #ledloop

To turn an output pin off we need to set its driver to zero and the andn (and not) instruction – when used
with a mask – takes care of that for us. As I stated the last time Propeller owes many of its features to the
success of the BASIC Stamp and, believe it or not, the &/ (and not) operator is part of PBASIC 1.0, the
language that runs on the original BASIC Stamp released in 1993!

The andn instruction actually does two things: it inverts the bits of the second value and then ANDs the
two values together; the result is written back into the first value. So we take a mask that has one bit set
that represents the pin we want to affect. By inverting this mask we now have a value that is all ones
except for the bit that represents our pin – this bit is set to zero. By and-ing the outputs register (outa)
with the inverted value our pin is set to zero and all others preserved. So, to turn off the LED we use
andn to write zeroes to the green and red control bits in outa. With both pins set to the same level no
current flows and the LED is off. The code for green and red should be easy to follow: turn one pin on
and the other off – this falls right into the no-brainer basket. But what about yellow?

I stated earlier that we have to run the green side of the LED more cycles than the red to create a color
that approximates yellow. With my LED I found that 15 cycles of green to one cycle of red looked good.
So when we jump to ledyellow we’re going increment a cycle counter (rgCntr) and check to see if it has
reached 16. While rgCntr is less than 16 we jump to the green handler, when rgCntr hits 16 we drop
through, reset the counter and then jump to the red handler.

Another thing we have to get used to when using the Propeller is that the C (carry) and Z (zero) flags are
not automatically updated as with other controllers (e.g., SX). The upshot is that we can maintain the
flags through other instructions and not have to worry about them being clobbered; the downside is, of
course, that we have to remember to tell the assembler to enable them.

Copyright © Nuts&Volts Magazine Loving LEDs Again July 2009 Page 5 of 10

You’ll see wc – called an effect – at the end of the cmp line in the yellow handler; this will write the carry
flag based on the result of the compare. The compare instruction works very much like sub except that it
doesn’t affect the first value. When the first value is less than the second the carry flag will be set (1).

Do yourself a favor and put a one of those sticky flags on Table 5-2 in the Propeller Manual (v1.0), this
table lists the aliases for the various combinations of C and Z flags that can be used to conditionally-
control instructions. One of the aliases for the carry flag being set is if_b which is short for IF BELOW.
As you can see, we’ve applied this to the jmp that follows the compare to make it conditional. When the
value of rgCntr is below 16 then we jump to the green handler, otherwise we drop through, reset rgCntr
and then jump to the red handler. The end result is a modulated LED that appears yellow.

Finally, we drop into a waitcnt instruction that will cause the program to pause until the system counter
matches the value in loopTmr. Another feature of waitcnt is that it can automatically reload the control
variable – this makes using it to control loop timing very simple.

Alright, the driver is done so let’s fold it into a Spin program. You’ll find that most cog-based objects
include methods called start and stop.

PUB start(p, c) : okay

 stop

 gPin := 0 #> p <# 26
 ledColor := LED_OFF #> c <# LED_RED

 okay := cog := cognew(@leddriver, @gPin) + 1

PUB stop

 if cog
 cogstop(cog~ - 1)

Note that the first thing the start method does is call stop; this is important because we don’t want two
cogs attached to the same object. The stop method checks to see if the LED driver is already running
(cog will be non-zero) and terminates it if it is.

The start method expects two parameters: the pin number for the green anode and the initial color state
of the LED. Note that use of the #> (minimum) and <# (maximum) operators in the assignments of gPin
and ledColor, this ensure that we pass legal values to the driver. You may wonder why the green anode
is limited to pin 26. My logic is this: pins 31 and 30 are used for the serial connection to program the
Propeller, and pins 29 and 28 connect to the EEPROM that stores the program – this leaves pins 27 and
lower to use. We limit the green anode pin to 26 because the driver assumes that the red anode is the
next pin up from the green pin. Finally, you can see that cognew is passing the address of gPin, not the
value of gPin. This is critical because we need to know the address of the parameter(s) we’re passing to
the driver.

Before getting to the LED demo lets round things out with methods that will make setting the LED color
simple and virtually self-documenting.

PUB setcolor(c)

 ledColor := LED_OFF #> c <# LED_RED

PUB off

 ledColor := LED_OFF

Copyright © Nuts&Volts Magazine Loving LEDs Again July 2009 Page 6 of 10

PUB green

 ledColor := LED_GRN

PUB yellow

 ledColor := LED_YEL

PUB red

 ledColor := LED_RED

For just a little bit of typing – that I’ve already done for you! – we can have code that looks like this:

 myLed.setcolor(LED_GRN)
 myLed.red

You’ve certainly noticed the use of constants when setting the LED colors. A nice feature of Spin is that
we can create a list of enumerated constants with a simple line, so the color constants declaration looks
like this:

 #0, LED_OFF, LED_GRN, LED_YEL, LED_RED

Okay, then, let’s put it work:

PUB main | idx

 start(0, LED_OFF)

 repeat
 repeat idx from LED_OFF to LED_RED
 setcolor(idx)
 waitcnt(MS_001 * 500 + cnt)
 off
 waitcnt(MS_001 * 250 + cnt)
 green
 waitcnt(MS_001 * 250 + cnt)
 yellow
 waitcnt(MS_001 * 250 + cnt)
 red
 waitcnt(MS_001 * 250 + cnt)

The code in the main method launches the led driver with the start method specifying pin 0 as the green
anode and beginning with the LED off. The first repeat puts the code that follows into an infinite loop. At
the top of that is a small loop that runs through the colors using the setcolor method to update the LED.
After that we use the individual color methods with 250-millisecond delays in between.

You’ll find this code in jw_bicolor.spin. This is just the starting point – what we want to do is separate
the LED code so that we can use it in other projects. Open jw_bicolor_v1_demo.spin (LED demo code)
and jw_bicolor_v1.spin (object methods and driver) to see how I’ve separated the constituent parts. To
use the driver as part of a project we must declare it as an object.

OBJ

 led : "jw_bicolor_v1"

Copyright © Nuts&Volts Magazine Loving LEDs Again July 2009 Page 7 of 10

PUB main | idx

 led.start(0, led#LED_OFF)

 repeat
 repeat idx from {
 } led#LED_OFF to led#LED_RED
 led.setcolor(idx)
 waitcnt(MS_001 * 500 + cnt)

 led.off
 waitcnt(MS_001 * 250 + cnt)

 led.green
 waitcnt(MS_001 * 250 + cnt)

 led.yellow
 waitcnt(MS_001 * 250 + cnt)

 led.red
 waitcnt(MS_001 * 250 + cnt)

See how we use the dot notation for object methods and how constants defined inside the object are
used in the program. These changes are subtle, and yet very important.

Blink Baby, Blink!
Okay, color control is nice but we’re talking about an LED coprocessor here, so let’s rev it up! I envision
having the need to set an LED to blink at a specific rate and it would be great if it could alternate between
two colors of my choice (I consider off a color). Open the updated driver (jw_bicolor_v2.spin) and have
a look at how we do this.

The first thing to do is add more control variables; we have two colors (one for each phase of the blinking)
and two timing periods that control the blinking rate and duty cycle. And, don’t worry, we can still have a
solid color; all we have to do is set both phases to the same color and the LED will not blink.

Remember that 10-microsecond timing unit I selected earlier? Here’s why I used that value: if we run a
10-microseond loop one hundred times it will consume one millisecond, and a millisecond is a convenient
unit of timing for delays (we’re used to it from PBASIC and SX/B PAUSE). You know where this is going:
the timing units for each phase will be specified in milliseconds.

getphases rdlong color0, color0Addr
 rdlong time0, time0Addr
 rdlong color1, color1Addr
 rdlong time1, time1Addr
 add phaseTimer, #1

runphase tjnz phase, #phase1

phase0 mov color, color0
 cmp phaseTimer, time0 wc
 jmp #checkphase

phase1 mov color, color1
 cmp phaseTimer, time1 wc

checkphase
 if_ae xor phase, #1
 if_ae mov phaseTimer, #0

Copyright © Nuts&Volts Magazine Loving LEDs Again July 2009 Page 8 of 10

The top of the 1ms loop is at getphases where we will read the current color and time settings for each
phase. After reading the [new] settings a timer for the current phase is incremented and we drop through
to runphase which is the top of the 10 µs loop.

Since we only have two phases we don’t need a jump table as when selecting color, so the tjnz (test and
jump if not zero) instruction works perfectly to get us to the phase handlers. Inside each handler we
move the phase color to the color control variable and then check the current phase timer against the
time specified for that phase, using the carry flag to record the result of the comparison. At checkphase
we check to see if the current phase time is above or equal to (if_ae) the phase setting and when that is
true we flip the phase with xor (0 to 1, 1 to 0) and reset the time. This is a case that demonstrates the
preservation of the carry flag and its use as a conditional controller with multiple instructions. Oh, and if
you’re wondering what happens when the condition fails… the instruction is treated like a nop (it
consumes four clock cycles but doesn’t do anything).

The color control code doesn’t change so let’s address the end of the loop.

loopwait waitcnt loopTimer, us010
 add loopCntr, #1
 cmp loopCntr, #100 wc
 if_b jmp #runphase
 mov loopCntr, #0
 jmp #getphases

This probably makes a lot of sense by now. After waiting for the 10us timer to expire we’re going to
update a loop counter and compare it to 100 – again, 100 x 10us = 1ms. When the loop counter is less
than 100 we jump to the inner loop at runphase, otherwise we reset the counter and jump to the top of the
outer loop at getphases.

It’s Better to Fade Away….
Let’s jump into the driver one more time and add a final feature: brightness control. As you’d expect this
is going to be accomplished with PWM (pulse width modulation) of the LED but there is a catch: we’re
using a bicolor LED and current can be flowing in either direction (or alternating), so how do we modulate
brightness? There answer is actually pretty simple: we modulate the direction control pin of one of the
anodes. You see, if we make either anode control pin an input there will be no current flow – in any
direction – through the LED.

Here’s another reason why I went with a 10 µs inner loop: multiplying that by 100 we get a convenient
one-millisecond timing interval and we also have a counter to use for on-off control of the PWM cycle in
1% increments. Let’s look a the code that gets inserted before the loopwait section (you’ll find this in
jw_bicolor_v3.spin)

pwmctrl test level, level wz
 if_z andn dira, gMask
 if_z jmp #loopwait
 cmp loopCntr, level wc
 if_b or dira, gMask
 if_ae andn dira, gMask

The top of the pwmctrl section first checks the value of level (brightness setting) for zero; when it is we
will turn off the output (by making the green pin an input) and skip right to loopwait. When level is
something greater than zero it is compared to loopCntr and when loopCntr is below the level setting we
will turn the led on; when loopCntr reaches level the on-cycle is complete and we turn the LED off.

In the end what we get is fixed-frequency, variable duty-cycle PWM that cause the LED to be on for the
percentage set in level. So what happens if we set level greater than 100? Nothing harmful; at 100 or
higher the LED will be on all the time as the value of loopCntr cycles between 0 and 99. I like this kind of

Copyright © Nuts&Volts Magazine Loving LEDs Again July 2009 Page 9 of 10

fixed-frequency PWM code because it’s easy to configure. I recently used it in an RGB LED object and it
worked really well.

Before I close I want to tell you something about jw_bicolor_v3_demo2.spin. This program shows how
we can launch another cog to control the brightness of the LED object in the background; for example, to
handle automated fades. The key here is having the LED object reveal the hub address of its brightness
control variable. With this information another object can manipulate brightness for advanced control.
Check it out, it’s pretty neat.

Propeller Platform Kits!
Good news, gang! The response to the Propeller Platform was so positive (one Parallax forum member
dubbed it “Propellerino”) that my good friend, Ken Gracey, has agreed to make kits available through
Parallax. This will certainly simplify building the P/P and save you money over having to buy raw PCBs
yourself. Figure 2 shows the final prototype; I really like the way it turned out. The only change from the
original design is the regulators. We changed from the LM108x series to the LM29xx series to simplify
parts procurement. My original thought for the high-current regulators was that I could use them for
powering servos. Well, having worked with a lot of servo animatronics between the first version and now I
found that this doesn’t help and for big animatronics an external servo power supply is in order.

Figure 2: The Propeller Platform

Copyright © Nuts&Volts Magazine Loving LEDs Again July 2009 Page 10 of 10

Wrap Up
Okay, admit it… when you first started reading this column you groaned, “Come on, Williams, LEDs
again?... Are you nuts?” Yeah, I get it, but I think I’ve shown that the lowly LED can become a thing of
wonder with some cool code in the Propeller chip. I’m a big believer learning new coding techniques with
simple hardware and you can’t get much simpler than an LED, right?

Okay, it’s time go experiment because we’ve laid the groundwork for a pretty serious project next time:
Waldo Part Deux. Yep, the Waldo project from back in September of 2007 was hugely popular so for its
two-year anniversary we’re going to recreate it for the Propeller and even add two more channels. The
hardware will be a plug-in module for the Propeller Platform that includes mini joysticks and all the
support circuitry. In addition to the LED object we just created we’ll also create and use background ADC
and servo control objects – it’s going to be a lot of fun and a very cool project for use in your holiday
animatronics displays.

Until next time, then, here’s to spinning and winning with the Propeller.

Bill of Materials
LED1 bi-color, green/red Mouser 78-TLUV5300
R1 220 Mouser 299-220-RC

