
Copyright © Nuts&Volts Magazine Spinning Up Embedded Control Projects May 2009 Page 1 of 9

Spinning Up Embedded Control Projects
By Jon Williams

For Nuts & Volts Magazine, Column 0, May 2009

One of my dearest friends is a gentleman named Cliff Osmond. In addition to being my friend he is my
acting coach and, as acting is about life, I learn a lot about life as I spend time with him. He’s been
around the block a few more times than me and what he has to say is valuable. Not long ago he said that
– as an actor – we have to be comfortable with being uncomfortable, because that’s when we’re really
alive. It’s an acting lesson and a life lesson, and time to apply it to my embedded control projects. I’ve
become happily comfortable with the SX the last couple years and at the urging of several friends and
readers I’m going to delve more into the Propeller. Don’t worry, from time-to-time I’ll use the SX and
BASIC Stamp, but getting out of my comfort zone, at least for a while, is going to be good for me. And
fun!

Introducing the Propeller Chip
The Propeller is the latest in Parallax’s line of microcontrollers though it differs from the BASIC Stamp and
Javelin in that it is completely custom silicon, designed in house, entirely by Parallax staff. I often refer to
the Propeller as a “multi-processor” instead of a microcontroller because it is comprised of eight 32-bit
processors (which Parallax calls “cogs”) that are controlled by a central “hub”. Each cog has its own RAM
so it can run independently, and it can communicate and share information with other cogs through
shared RAM in the hub. The hub also handles gritty details like the system clock (which all cogs use and
keeps them in sync) and providing access to shared resources like the system RAM and ROM tables.

As advanced as it is the Propeller maintains some of the “genetic” material born out of the original BASIC
Stamp. For starters it is programmed through a simple serial port; no special tool is required. And like
the BASIC Stamp the Propeller’s program is stored in an off-board EEPROM (32K). This last point has
stuck in the craw of some professional developers as code stored in an off-board EEPROM is easy to
read and clone. This issue is being addressed in the next generation Propeller by encoding the EEPROM
with an encryption key that is burned into the Propeller (OTP). This encoding will cause the contents of
the EEPROM to look like gibberish to any Propeller chip that does not contain the proper key.

Those with BASIC Stamp experience know that running code from an external EEROM can take a real
toll on overall speed. The Propeller borrows from another Parallax product, the Javelin Stamp, in that the
EEPROM image is moved into the system (hub) RAM on power up. Using internal RAM gives us a
tremendous speed boost and frees the EEPROM pins (28 and 29) for other tasks. I tend to use these
pins as a general I2C buss as they’re predefined that way for loading the Propeller code.

If you’re brand new to the Propeller please see my articles in the April, May, and June 2006 issues of
Nuts & Volts; digital reprints are available online.

Copyright © Nuts&Volts Magazine Spinning Up Embedded Control Projects May 2009 Page 2 of 9

Development Tools
Getting started with the Propeller means we’ll need some sort of development platform and having been
around a few years now there are a number of offerings from Parallax and several third parties –
including anything we design ourselves. I have a few of the Parallax boards that I use when developing
my own projects but that’s not to say that products offered by others aren’t equally excellent; I just don’t
have experience with them.

Many will start with the Propeller Demo Board shown in Figure 1. This is a nice little board for doing
demos (hence the name) and small experiments but may hold you back when you start getting into bigger
projects. If this is what you have, great – it has all the connectors you need for the fun stuff like audio,
video, mouse, and keyboard, and has several LEDs which lets you do lots of code training without every
having to wire anything.

Figure 1: Propeller Demo Board

On the other end of the scale – and my favorite piece of Propeller gear – is the Propeller Professional
Development Board (PPDB) shown in Figure 2. This is descended from the tremendously-successful
Professional Development Board (PDB) that many pros use to develop BASIC Stamp and SX projects.
Now I know that some of you will cringe at the PPDB price tag (about $170) but I hope you’ll believe me
when I tell you it is worth every cent and so much more. As I just stated, I do a lot of development work
for EFX-TEK using the PDB and the PPBD is the answer to my wishes for a similarly-equipped board for
the Propeller. When I’m developing projects I don’t want to go looking for anything except some hook-up
wire (I keep a lot of it on my bench); with the PDB and PPDB I can focus code and connections instead of
looking for resistors and LEDs.

Copyright © Nuts&Volts Magazine Spinning Up Embedded Control Projects May 2009 Page 3 of 9

Figure 2: Propeller Professional Development Board

What if you already have a PDB? You could, as I did prior to the PPDB, add a 3.3v regulator to the PDB
breadboard and build a standard Propeller demo circuit (Figure 3) on the breadboard. If you’re not used
the Propeller but are familiar with I2C you may wonder why Parallax schematics have only one pull-up on
the buss – just on the SDA pin. For reasons unknown to me, the Propeller drives the I2C SCL line high
and low when transferring the EEPROM contents to hub RAM. After the hub is loaded both pins float and
you can use other I2C devices on these pins – just make sure you don’t write to EEPROM (I2C device
type %1010) address %000 as you could corrupt your program. If you’re going to use pins 28 and 29 for
other I2C devices in your project be sure to add a pull-up to pin 28. IMPORTANT NOTE: If you decide to
connect additional EEPROMs (device type %1010) to pins 28 and 29 you must ensure that they are
addressed %001 and higher.

Figure 3: Propeller Programming Connection Schematic

Copyright © Nuts&Volts Magazine Spinning Up Embedded Control Projects May 2009 Page 4 of 9

The PPDB is a great tool and yet at some point we’ll want to make a project permanent. For my semi-
permanent and permanent projects I decided to “liberate” a good idea from another microcontroller
platform: the Arduino. The original Arduino has a base platform with the microcontroller, power,
programming, and IO connections and what many have done is created various application “shields” that
plug into the base board.

In Figure 4 you can see the first version of what I call my Propeller Platform. There is nothing magic at all
about this board (see the schematic in Figure 5); I used the ExpressPCB mini-board size and built a
standard Propeller circuit on it – with an additional socket for another EEPROM (address %001). The
board goes together in just a few minutes using all through-hole parts. After building the board I made
some refinements to the design files that you can download from Nuts & Volts: I changed the power
switch to a right-angle style and found shorter caps for the power supply that allows a daughter-board to
fully seat in the power and IO sockets.

The idea behind the Propeller Platform is to have a known good processor base that can move from
project to project as desired – this should help keep the costs of future projects a little more manageable.
One final note on the board: to keep the crystal low on the PCB I used two elements from a machine pin
socket. You have to be careful removing the plastic but doing that will allow it to seat cleanly in the PCB.

Figure 4: Propeller Platform

Copyright © Nuts&Volts Magazine Spinning Up Embedded Control Projects May 2009 Page 5 of 9

Figure 5: Propeller Platform Schematic

Programming the Propeller
The BASIC Stamp started a revelation in small, high-level microcontrollers bringing the BASIC language
that many of us learned as youngsters to the world of embedded control. One would think, then, that
being a Parallax product the Propeller would be programmed in BASIC as well. After all, how many
PBASIC knockoffs exist today? Too many to count – a tribute to how well PBASIC performed and was
accepted. In the end, though, when Parallax designed the Propeller they looked at other programming
languages, especially those designed for coding efficiency, and from that study created as slightly-unique
– yet familiar feeling – high-level language called “Spin.”

Like PBASIC, Spin is an interpreted language but the similarity stops right there. As mentioned earlier
Spin byte codes are run from the system RAM instead of an EEPROM so there is a huge speed increase,
the processor running Spin tends to run at 80MHz (more on that in a moment), and the Propeller is built
on a 32-bit architecture which means it can do a lot of work with very few instructions.

An interesting difference between the Propeller and the other HLL (high-level language) modules on the
market is that the Spin was developed in tandem with and specifically for “brains” underneath – most
other embedded HLLs are created on top of existing microcontroller products and may in fact not always
be as efficient as one would like.

As Spin and the Propeller Assembly language were created at the same time there are very close ties
between them which allows Spin – even though it’s a high level language – to be very efficient. And it’s
easy to use. I like Spin because it caters to my whacky desire for neat program listings; Spin actually
uses indentation to define structures within the code. For those used to “messy” programming you may

Copyright © Nuts&Volts Magazine Spinning Up Embedded Control Projects May 2009 Page 6 of 9

have to get used to this, while some coming from high-level scripting languages like Python will find feel
right at home.

Connecting Spin & Assembly
An interesting thing about the Propeller is that after reset it defaults to Spin, the high-level language.
Even if we want to write the entire application in Assembly we have to use a very simple Spin program to
launch it so the connection between Spin and Assembly is important. If I was going to allow myself to fall
into old habits I’d stick with nothing but Spin for a while but hey, let’s push past our comfort level and
learn some new tricks, shall we?

In March I had the opportunity to participate in a webinar with my friend and old Parallax colleague, Jeff
Martin. Of particular interest to me was the connection between Spin and Assembly – in terms that I
could understand and use in my own projects. While I don’t normally believe in simple demo code I’m
presenting an updated version of a program Jeff created for me – you can use this to test your own
Propeller Platform. This doesn’t do a heck of a lot, but clearly illustrates the connection between Spin
and Assembly and cooperative work between cogs.

Let’s cover the Spin section first.

CON
 _clkmode = xtal1 + pll16x
 _xinfreq = 5_000_000

VAR
 long cmd
 long paramL1

OBJ
 terminal : "simple_serial"
 myVal : "numbers"

PUB Main
 cmd := 0
 cognew(@ASM, @cmd)

 terminal.Init(31, 30, 19200)
 myVal.Init

 terminal.tx(12)
 terminal.str(myVal.tostr(incval(100), myVal#DDEC))
 terminal.tx(13)
 terminal.str(myVal.tostr(decval(1000), myVal#DDEC))

 repeat

PUB incval(val) : result
 paramL1 := val
 cmd := 1
 repeat while cmd <> 0
 result := paramL1

PUB decval(val)
 paramL1 := val
 cmd := 2
 repeat while cmd <> 0
 result := paramL1

Copyright © Nuts&Volts Magazine Spinning Up Embedded Control Projects May 2009 Page 7 of 9

The CON section is what we’ll tend to use as a standard: 5 MHz crystal with the PLL cranked up to 16x
so we’re running the cogs at 80 MHz.

In the VAR declarations we define two longs that will be used to communicate with the Assembly cog.
The purpose of our demo is to send a command and value to the Assembly cog; the command will tell the
Assembly cog what to do with the value.

In the OBJ section we reference a serial object to send information to a standard terminal (I tend to use
HyperTerminal) and an object called myVal which allows us to create formatted numeric strings for the
terminal.

At the top of Main we start by clearing cmd and then launching the Assembly cog with the cognew
function. Since we’re going to launch Assembly code we need provide a pointer to it using the @ symbol
with the name of the label used (ASM). The next item in the function is the address of the command
variable – as all cogs have access to the system RAM this allows the Spin and Assembly sections to work
together. The address of cmd will be passed to the Assembly section inside the Propeller using the par
register.

Okay, let’s have a look at the Assembly section.

DAT

 org 0

ASM mov cmdAddr, par
 mov valAddr, par
 add valAddr, #4

WaitForCmd rdlong tmpL1, cmdAddr
 tjz tmpL1, #WaitForCmd

CheckCmd cmp tmpL1, #1 wz
 if_z jmp #Increment
 cmp tmpL1, #2 wz
 if_z jmp #Decrement

BadCmd wrlong zero, cmdAddr
 jmp #WaitForCmd

Increment rdlong tmpL1, valAddr
 add tmpL1, #1
 wrLong tmpL1, valAddr
 wrLong zero, cmdAddr
 jmp #WaitForCmd

Decrement rdlong tmpL1, valAddr
 sub tmpL1, #1
 wrLong tmpL1, valAddr
 wrLong zero, cmdAddr
 jmp #WaitForCmd

' ENDASM

cmdAddr long 0
valAddr long 0

tmpL1 long 0
zero long 0

Copyright © Nuts&Volts Magazine Spinning Up Embedded Control Projects May 2009 Page 8 of 9

If you look at the contents of any programmed microcontroller it would look like a bunch of random values
that could be program code or data; it’s the location of these values that allows the microcontroller to
interpret them as what they actually are. This means, then, that we will write our Propeller Assembly
code inside a DAT block of a Spin program. When we launch the new cog this code is copied from the
Spin DAT section into the new cog’s RAM to run.

The first thing our program does is retrieve the par register which is holding the address of the command
that we’re going to use later. This is copied to a local (inside the new cog) variable called cmdAddr. In
actual fact we need to know two addresses: the address of the command value and the address of the
variable to work on. As we can only pass one long to the Assembly section we placed our variables in
order in the Spin section; in the Assembly section we can determine the address of the variable to work
on by adding four (four bytes per long and hub memory is always addressed as bytes) to the value in the
par register; this will be stored in valAddr. Using this strategy we an Assembly program can operate on
as many system variables may be required.

Here’s what the Assembly program is going to do: it will wait for a command from Spin, interpret the
command and then do something with the variable located in valAddr. The Assembly section knows it
has a command when the value in cmdAddr is non-zero. A two-line loop at the top will cause this
Assembly program to wait using the tjz (test, jump on zero) instruction.

Once a command is detected it is tested for one or two – one for increment, two for decrement. Note that
Propeller Assembly allows the programmer to determine the affect an instruction has on flags. We’re
telling the cmp (compare) instruction to set the wz bit when the result is zero (this signifies a match).
After the compare we test the zero flag (if_z) and jump to the appropriate routine. The Increment section
retrieves the value from valAddr, adds one to it, then puts the new value back. The code at Decrement is
identical save for the fact that it subtracts one.

Now the important part: the command value in cmdAddr is cleared to zero. Let’s go see why.

Back in the Spin code you’ll see a function called incval that is going to be used to increment a value
passed to it. The value passed is moved to paramL1 which the Assembly section tracks in valAddr.
Then we set cmd, which the Assembly tracts in cmdAddr, to one to indicate increment. An important
reminder here is that the cognew function started the Assembly code in its own processor (cog) and it is
running concurrent with and yet independent of the cog running the Spin program – it is the sharing of the
locations of cmd and paramL1 that lets them work together.

Since both programs are running at the same time we have to store the value first and then change the
command. As soon as the command is changed to a non-zero value the Assembly program is going to
take action. Remember how we had the Assembly section clear command to zero when finished? We
can see now how this is used by the Spin program: after setting the command value a simple repeat loop
holds the program until the command is cleared before returning the updated value to the caller.

When you run the program your terminal will print two numbers: 101 and 909 – these values are returned
from the incval and decval functions in the Spin program, but the actual incrementing and decrementing
took place in the Assembly program.

Okay, I know this program is barely a step up from blinking LEDs but I think it’s really important to get a
good grasp on the mechanics of connecting Spin and Assembly if we’re going to take advantage of all the
horsepower the Propeller has to offer. Do take a few minutes to load this program into your development
system – whatever it might be – and run it. Better yet, run it and then modify it to do something more. Go
beyond your comfort zone; this will make you a better programmer.

Copyright © Nuts&Volts Magazine Spinning Up Embedded Control Projects May 2009 Page 9 of 9

Intervalometer Follow-Up
Just a quick note for those that have or are considering building the intervalometer project from the March
column: a friend of mine pointed out that one of my favorite places in Los Angeles, All Electronics, has a
stick-on IR LED cable that is normally used for controlling VCRs – this makes the IR connection to the
camera much more reliable. Look for part number #IR-21.

Another option – and the one I prefer – is an IR Extender from www.smarthome.com; the part number is
#8170S. This costs more than the unit from All Electronics but is manufactured by them so you never
have to worry about supplies, and it’s quite a bit smaller so I find it easier to mount to my camera. Either
way, using one of these stick-on emitters ensures we won’t be missing any important shots with the
intervalometer.

That’s about it for now – until next time, Happy Spinning!

Bill of Materials

C1-C3 47 Mouser 140-L25V47-RC
C4-C5 0.1 Mouser 80-C315C104M5U
J1 2.1mm Mouser 806-KLDX-0202-A
LED1 3mm red Mouser 859-LTL-4221
LED2-LED2 3mm green Mouser 859-LTL-4231
PGM 0.1 R/A Header Mouser 517-500-01-36
R1 1K Mouser 299-1K-RC
R2 300 Mouser 299-300-RC
R3 120 Mouser 299-120-RC
R4-R5 10K Mouser 299-10K-RC
RST N.O. pushbutton Mouser 653-B3F-1002
SW1 SPDT Mouser 506-SLS121RA04
U1 P8X32A-D40 Parallax P8X32A-D40
U2 24LC256 Mouser 579-24LC256-I/P
VR1 LD1085V50 Mouser 511-LD1085V50
VR2 LD1086V33 Mouser 511-LD1086V33
X1 5 MHz Parallax 251-05000

S1 40-pin Mouser 571-1-390262-5
S2-S3 8-pin Mouser 571-1-390261-2
SV1-SV2 Board Mount Conn Mouser 517-974-01-04-RK
SPx1-SPx2 Board Mount Conn Mouser 517-974-01-16
SXR Machine pin socket Mouser 506-510-AG90DD1

