
Copyright © Nuts&Volts Magazine Lighting Up the Season — Again! November 2010 Page 1 of 12

Lighting Up the Season — Again!
By Jon Williams

For Nuts & Volts Magazine, Column 9, November 2010

I like this time of year. The air is clear (even in Los Angeles!), the mornings are crisp, and the evenings
are brightened with holiday decorations that illuminate the insides and outsides of homes everywhere. My
home is somewhat small, so my lighting projects are, too. Small doesn’t mean wimpy, though, and my
little 12-channel lighting board for the Propeller Platform is designed to be tough enough for applications
that go way beyond LEDs.

The Power of 12
A couple months ago I had the pleasure of working with a leading Hollywood special effects designer to
add lighting to a big prop he built for a client. The prop is a futuristic soldier in a large suit that has rocket
engines on the back. My friend wanted to use very bright RGB LEDs in the rockets so that they could be
faded up to bright red, then slowly transition to blue—all while appearing to pulsate and “rumble” as a real
rocket engine does.

Output control was pretty easy as I’d previously used a TIP125 in a high-side driver circuit for high-power
LEDs. I simply whipped up a 12-channel board to handle the “rockets” and other lighting tasks, and then
took advantage of launching multiple Spin cogs in the Propeller to simplify the code for each element of
the prop. In the end, my friend was very happy—so much so that he was actually making engine sounds
with his mouth after we got to code adjusted just the way he liked it!

After buttoning up that project I started thinking about some holiday lighting ideas and then I had a
thought: if I beef up that circuit—just a little—I can use it for other things, too. With 12 channels I could
control 12 independent devices, or I could dedicate three channels to an RGB LED module, or I could
dedicate four channels to control a stepper motor, or I could control any combination thereof. As my friend
John says, “It’s just SMOP” (small matter of programming).

As I was already using a TIP125 which can handle a fair bit of current, I updated the driver circuit (Figure
1) by adding a diode across the output terminal; this will let the board handle inductive loads, too. The
real trick, though, was squeezing 12 of these circuits onto a standard Propeller Platform module and
running power traces on the top and bottom of the PCB to increase current capability of the board. That
said, the total current should be limited to 5 A and only if power is coming in on TB13 (when power is
“borrowed” from the Propeller Platform the connections/traces from the P/P to the driver board cannot
carry that much current).

Copyright © Nuts&Volts Magazine Lighting Up the Season — Again! November 2010 Page 2 of 12

Figure 1

Figure 2 shows a completed board (with 12V test LEDs attached). Yes, it’s pretty busy and will take a little
patience to build; just take your time with the components and start with the shortest (resistors) and work
your way up to the tallest (TIP125s). As suggested above, TB13 is available when you need to control a
lot of power. You an also power the Propeller Platform from TB13—there are power jumpers to the VIN
headers that need to be installed for this. Note, though, that the power switch on the Propeller Platform is
bypassed when power from TB13 is shared through these jumpers.

Figure 2

Copyright © Nuts&Volts Magazine Lighting Up the Season — Again! November 2010 Page 3 of 12

With the little room I had left I squeezed two simple circuits onto the board. The first, shown in Figure 3, is
a simple pushbutton and normally open, dry-contact input. As with the output circuit above there is a pull-
down on the IO pin (that is part of a SIP package). The pull-down is especially important on the output
circuits to hold the outputs off while the Propeller is in reset and the IOs are floating.

Figure 3

The other circuit I added is the TTL serial port shown in Figure 4. The 2.2K resistor in the RX line allows
5V systems to be connected without problems, and this header can be also used with a standard IR
sensor for remote control (I did this with the “rocket man” prop—it was fun!).

Figure 4

Copyright © Nuts&Volts Magazine Lighting Up the Season — Again! November 2010 Page 4 of 12

Oh!, before I forget, there is one final note on assembly: the 10K SIPs are intended to go on the bottom
side of the board (Figure 5); this keeps them clear of wiring entering the terminal blocks.

Figure 5

Electronic Menorah Redux
With 12 channels of control at our disposal and a holiday season just begging for cool lighting projects
let’s jump right in—it’s just a small matter of programming!—right? First up is a do-over of a BASIC Stamp
program that I wrote for my column four years ago: an electronic Menorah.

With the BASIC Stamp version we used a capacitor on the output to smooth a random pulse to the LED
to [well, sort of] mimic the flame effect. With the power of the Propeller we don’t need to do that any more,
and we can get more realism to boot. In the October 2010 issue of Nuts & Volts there is an article that
shows how to simulate candle flames with the Propeller; we’re going to borrow some of that code and
build the Menorah program from it.

It the BASIC Stamp version we simply turned it on and it would light the candles for the current day
(which was incremented at each power-on cycle and stored in the EEPROM). This meant that you had to
light it on the first day and not miss any days in between. For the update I wanted an easy way to select
the day at random and to allow manual control over lighting each “candle.”

While watching my test LEDs flicker I remembered a program that I wrote in 1995 for a BASIC Stamp 1
user. He was a pilot and owned a small airstrip. What he asked me to create was a program that could
count the number of microphone “clicks” coming through his air-to-ground radio system. The clicks count

Copyright © Nuts&Volts Magazine Lighting Up the Season — Again! November 2010 Page 5 of 12

would be used to activate a relay to turn on the runway lights. The idea was to look for a specific number
clicks in a defined time-frame so that standard radio communications would not trip the circuit.

In case you’re wondering, yes, it worked. We used a 555 to one-shot the audio pulse which allowed the
BASIC Stamp 1 to detect it. With the Propeller we can do the same thing in software.

As the Power 12 module has a button on it this seemed like good way to go; we can start the sequence
(indicated by a lit Shamash candle) by pressing in the current day (1 to 8), and then subsequent presses
will light the next candle. By using the secondary presses the ceremonial blessings can be recited
between each candle.

Author’s Note: I am not Jewish and do not know if an electronic Menorah is valid for the Hanukkah
ceremony. Please consult with your Rabbi if you have any concerns in this regard.

I actually developed two helper routines for the button input. The first simply debounces a specified input
pin for a number of milliseconds; if the button is pressed through the entire cycle then it is considered
good. Here’s that bit of code:

pub getbutton(pin, dbtime) | db, t

 dira[pin] := 0
 db := 0

 t := cnt
 repeat dbtime
 waitcnt(t += MS_001)
 if (BTN_MODE == ACTIVE_HIGH)
 db += ina[pin]
 else
 db += !ina[pin] & %1

 return (db == dbtime)

We start by forcing the desired pin to input state and clearing a variable that will count the number of
active cycles through the loop; if the active cycles matches the specified debounce time then the button is
considered pressed.

Within the loop we wait one millisecond (synchronized, so as not to add too much overheard for long
debounce periods) and then add the state of the input to the counter. Note that the code can
accommodate active-high and active-low inputs. In my experience the buttons on a given project tend to
use the same active state so I set that state (BTN_MODE) in the constants section.

At the end of the loop we return true or false depending on whether or not the button remained pressed
through the entire cycle. This code is very modular and provides a fixed delay that we will use in the
following method.

pub getcount(pin, cmax) | count, idle

 count := 0
 idle := 0

 repeat
 if (getbutton(pin, 50) == true)
 repeat
 until (getbutton(pin, 50) == false)
 count += 1
 idle := 0

Copyright © Nuts&Volts Magazine Lighting Up the Season — Again! November 2010 Page 6 of 12

 else
 idle += 50

 if (count == cmax)
 quit

 if (count > 0) and (idle => 1000)
 quit

 return count

Again, the purpose of this method is to count the number of presses on the target input pin, up to a
specified maximum. It uses the getbutton() method to scan the pin and create internal timing.

At the top we clear the button count and idle timer variables. When a button press is detected the code
waits for it to be released, increments the count, and then resets the idle timer. If there is no button press
then the idle timer is incremented by 50 as that is the timing used with getbutton().

There are two ways to return from this method: 1) the maximum button count is reached, or 2) there is a
non-zero count and the button has been left idle for at least one second (1000 ms). I considered passing
the maximum idle time as a parameter, but it really didn’t seem to be worth doing. I spent a lot of time
playing with this method and it works quite well. That said, you may need to fine-tune it for different
buttons as some are easier to press than others.

And now we can create the working Menorah code.

pub main | day, level

 leds.init(360)

 bytefill(@wicks, 0, 12)
 cognew(flicker(9), @stack)

At the top we initialize an object called leds—this is a 12-channel BAM driver that is set up especially for
the Power 12 PCB so the only thing we have to specify is the desired modulation frequency. The next
step clears the array called wicks that will hold our candle brightness values. Finally, we launch the
candle flicker generator into its own cog using cognew (this is discussed in detail in the October 2010
issue).

The next step is to get the day number from the user and then light the Shamash (“helper”) candle.

 day := getcount(TRIG, 8)

 repeat level from 0 to 255
 wicks[8] := level
 pause(6)

The current day is entered with the getcount() method which, for a Menorah, is limited to eight. After
returning from getcount() we light the Shamash candle which is on channel nine (P8) of the Power 12
board. A six-millisecond delay between each brightness level causes the “candle” to be fully lit in about a
second and a half.

The next step is to light each candle in order, starting with the current day. A button press is required for
each candle so that there is time for the recitation of blessings between each.

Copyright © Nuts&Volts Magazine Lighting Up the Season — Again! November 2010 Page 7 of 12

 repeat
 pause(1000)
 repeat
 until (getbutton(TRIG, 50) == true)
 repeat level from 0 to 255
 wicks[day-1] := level
 pause(6)
 if (--day == 0)
 quit

Within the loop we allow the last candle to “burn” at least one second before scanning the button for a
new press. When this is detected the candle for the day is “lit” just as we did above. The day indicator is
then decremented to point to the next candle. When all are lit we can quit the repeat loop.

The last step is to wait for one more press—this time to extinguish the candles. While I found a lot of good
information regarding the lighting sequence of the Menorah, I never came across anything having to do
with extinguishing the candles. This routine, then, will very slowly dim all at the same time.

 repeat
 until (getbutton(TRIG, 250) == true)

 repeat level from 255 to 0
 repeat day from 8 to 0
 if (wicks[day] > 0)
 wicks[day] := level
 pause(24)

Note that we require a longer button press to extinguish the candles—this is by design to prevent an
accidental bump of the button from extinguishing them too early. Note, too, that the loop timing for the
fade out is longer to create a nice, slow fade out.

So there you have it: a Propeller-Powered electronic Menorah. I think you’ll find the code easy to modify if
you chose, and the candle simulation is far nicer than the old RC circuit. You can find the complete
program in the downloads package as jm_pp12_menorah.spin.

The Kwanzaa Kinara
Before we move on there is another, multi-day holiday celebration that uses a special candelabra:
Kwanzaa. Those that celebrate Kwanzaa light the Kinara which has seven candles (one for each day). As
the Kinara candles are lit in ascending order each day the code is a little simpler.

That said, I employed a little trick in this program to show you how to re-map outputs when they are not in
the desired order. Let’s say, for example, that we built a beautiful electronic Kinara and wired it with the
outputs connected to each candle, moving left-to-right, in ascending order; like this

1 2 3 4 5 6 7

The problem is that the Kinara candles are lit in this order:

2 4 6 1 7 5 3

In the event we can’t (or don’t want to) rewire the project we can remap the outputs with a simple table in
Spin. Here’s a little table I created to remap the (zero-indexed) day to the physical channel output on the
board:

dat

kinara byte 3, 0, 6, 1, 5, 2, 4

Copyright © Nuts&Volts Magazine Lighting Up the Season — Again! November 2010 Page 8 of 12

On the first day (0) we will light the center candle (black,) which is connected to P3. On the second day
we will light the outermost red candle which is connected to P0. The map should now make sense.

Here’s the core code for the Kinara:

 repeat
 repeat
 until (getbutton(TRIG, 100) == true)
 pause(250)
 if (getbutton(TRIG, 150) == false)
 if (day < 7)
 idx := kinara[day]
 repeat level from 0 to 255
 wicks[idx] := level
 pause(6)
 ++day
 else
 repeat level from 255 to 0
 repeat day from 6 to 0
 if (wicks[day] > 0)
 wicks[day] := level
 pause(24)
 quit

At the top we have a little trickery concerning the button input. Since the Kinara candles are lit in
ascending order and always start with the central candle, the program doesn’t know what day it is—we
tell it with each new press. What we do, then, is scan the button, wait a bit, then check again (note these
periods are slightly longer than before). The idea is that a short button press will light the next candle and
a long button press will extinguish those that are lit.

You can see that we treat the dat table like a simple array, reading the correct output for the day that
we’re presently lighting. Easy, right? I think so—and definitely easier than rewiring a project.

See jm_pp12_kinara.spin for the complete, commented listing.

For those that are interested in building a fully functional Menorah or Kinara I encourage you to consult
the October 2010 issue of Nuts & Volts as there are detailed instructions on building “candles” from LEDs
and items that you can pick up at any hardware store.

Playing with Protocols
More and more of those home Christmas displays that I enjoy so much are coming under computer
control. I think a good chunk of the credit goes to a nifty bit of freeware called Vixen which was developed
and maintained by my friend, KC Oaks.

If you’re new to this stuff and really want to dive into the fray I suggest that you check out
www.doityourselfchristmas.com. It’s a very active set of forums with many knowledgeable, highly-
enthusiastic members.

One of the more popular protocols supported by Vixen and a favorite with many DIY Christmas lighting
enthusiasts is called Renard, which was created by a gentleman named Phil Short. Most of the code on
the ‘net for the Renard protocol is PIC-based as that’s what Phil uses, though I have seen an
implementation done in SX/B.

The Renard system is typically setup such that one board receives the packet from an upstream device
(console or another unit) and uses the bytes intended for this board while retransmitting all others. I
believe this design was intended to create a plug-and-play, auto-addressing scheme.

Copyright © Nuts&Volts Magazine Lighting Up the Season — Again! November 2010 Page 9 of 12

You see, each controller is looking for a specific two-byte sequence at the start of its data:

$7E $80 <dimmer data>

If we had two controllers in the system the we would see something like this from the console:

$7E $80 <aaaaaaaa> $7E $81 <bbbbbbbb>

In the Renard system the packet that follows $80 is consumed locally and not retransmitted. When the
second address byte is ($81) received by the first controller it is decremented to $80 which enables the
second packet for the second controller. Downstream of the first controller the stream above becomes:

$7E $80 $7E $80 <bbbbbbbb>

As you can see, the first packet of dimmer values is removed and the second address is decremented
such that it will be recognized by the second device in the chain. The second device isn’t bothered by the
missing packet data; the new SYNC byte that follows the address byte resets everything internally.

With the large base of users one can only assume that the system has proven itself. My question
became, can I create a half-duplex (receive-only) device that would work with the protocol? I think the
answer is yes and I’m going to show you want I did.

From my view of the world the Renard protocol has three major states:

 wait for sync byte ($7E)
 wait for address byte ($8x)
 process packet bytes

To send the SYNC value as a dimmer level it gets encoded as two bytes: $7F, $30. What this means,
then, is that we need two-byte encoding for a $7F (ESC) dimmer level—that would be $7F, $31. Finally,
there is a “pad” byte that may be sent by the console that is ignored by the Renard device. To use the
PAD value ($7D) in the dimmer packet it gets encoded as $7F, $2F.

Okay, then, let’s give it a whirl. For most serial applications we can use the FullDuplexSerial object to do
the heavy lifting. Yes, we only need half duplex (reception) for this project but FDS is still just fine. To
setup FDS we will typically do something like this:

 console.start(RX1, TX1, %0000, 115_200)

The serial object is called “console” and we’re going to receive at 115.2K baud on pin RX1 (the
programming port to make testing easy). The third parameter is the mode; in this case we’re going with
the standard true mode which works with RS-485 devices, as well USB-Serial devices like the Prop Plug
and the USB2SER.

And now for the fun! What I did is setup a simple state handler to accommodate the rules defined for the
Renard protocol. Again, my code is just a “sniffer” (that is, it doesn’t retransmit anything) so it will be
looking for an address that could be something higher than $80 (which it must be if there are standard
Renard devices in use on the same buss).

 console.rxflush
 state := W_SYNC
 chan := 0

 repeat
 cmd := console.rx
 case state
 W_SYNC : if (cmd == SYNC)
 state := W_ADDR

Copyright © Nuts&Volts Magazine Lighting Up the Season — Again! November 2010 Page 10 of 12

This is the basic setup and handling the first state. The receive buffer gets flushed after the serial object is
started just to make sure that there’s no garbage in it. After initializing the state and chan variables (which
are local to the method therefore must be manually initialized) we drop into a repeat loop that will
execute the state handler.

At the top of the loop we receive a byte from the console and drop into a case structure. The first task is
to look for the SYNC byte. When that happens we can advance the state to look for the address byte that
matches our board.

 W_ADDR : if (cmd == PAD)
 ' ignore
 elseif (cmd == SYNC)
 ' no change
 elseif (cmd == ADDR)
 state := W_LVL1
 chan := 0
 else
 state := W_SYNC

In the W_ADDR state the program is waiting for the address byte, but other values could arrive and we
need to handle them. If a PAD ($7D) byte or another SYNC byte arrives there is no change in state. If the
correct address byte arrives then the state is bumped to start reading dimmer values from the stream and
the channel pointer is reset to zero. If any other value arrives we reset the handler and wait for the next
SYNC byte.

 W_LVL1 : if (cmd == PAD)
 ' ignore it
 elseif (cmd == SYNC)
 state := W_ADDR
 elseif (cmd == ESC)
 state := W_LVL2
 else
 leds.set(chan, cmd)
 if (++chan == CHANNELS)
 state := W_SYNC

In most cases the packet will arrive very cleanly but, as we did above, we need to handle any exceptions
as well. If a PAD byte comes in we ignore it. If a new SYNC byte shows up then we reset the state
processor to look for the board address. If an ESC byte arrives then the channel value is encoded as two
bytes and we update the state handler to process the second byte. Finally, if none of that happens we
simply take the new byte as the current channel value. After updating the dimmer the channel count is
incremented, and when we’ve reached the limit for this board the state is reset to start the process for the
next packet.

For those dimmer values that are encoded with two bytes the W_LVL2 state handles the second byte and
updating the dimmer channel.

 W_LVL2 : if (cmd => $2F) and (cmd =< $31)
 cmd := $7D + (cmd-$2F)
 leds.set(chan, cmd)
 if (++chan == CHANNELS)
 state := W_SYNC
 elseif (cmd == SYNC)
 state := W_ADDR
 else
 state := W_SYNC

Copyright © Nuts&Volts Magazine Lighting Up the Season — Again! November 2010 Page 11 of 12

If the second byte is in the correct range ($2F to $31) the dimmer value is calculated and LED channel is
updated. As above, the channel count is checked and if the value just received is for the last channel, the
state processor is reset.

If we happen to get a “broken” packet and a new SYNC byte shows up, then we go back to looking for the
address byte, otherwise we go back to looking for the next SYNC byte.

Whew! I know that reading about that process probably makes it seem more difficult than it is—once you
see the full listing (in jm_pp12_renard_ez.spin) it will be easier to grasp. Does it work? Absolutely!—and
I blasted packets at it all day long at 115.2K baud (most Renard systems run at 57.6K or slower). Figure 6
shows my Vixen test pattern that I sent to the board during testing. Every time I looked in on it the pattern
was happily running on the LEDs, so the trouble we took to make the state handler robust seems to have
paid off.

Figure 6

Vixen supports a lot of interesting protocols and with the flexibility of Spin it will be worth investigating
more of them—but let’s save that for another time, shall we? Since we could add two half-duplex ports to
the Propeller Platform using the Gadget Gangster Prototyping board, it might be fun to create a traditional
Propeller-based Renard device that handles the pass-through. Are you up to it? Of course you are, and
I’ll probably try it myself down the road....

For now, though, and as this is my last column of the year, let me wish you and yours the very best for
this holiday season and the coming New Year. I am grateful to get to share my experiments in Nuts &
Volts and sincerely appreciate Robin, Larry, and all the nice folks I interact with a T&L Publications. Of
course, I must also thank my friends at Parallax (that started for me with a BASIC Stamp 1 some 16 years
ago), my colleague, John Barrowman, and, finally, my wonderfully supportive friends and family. May God
bless you all.

Until next time, light up your life and keep spinning and winning with the Propeller!

Copyright © Nuts&Volts Magazine Lighting Up the Season — Again! November 2010 Page 12 of 12

Resources
Jon “JonnyMac” Williams
jwilliams@efx-tek.com

Parallax, Inc.
www.parallax.com

Vixen
www.vixenlights.com

Gadget Gangster
www.gadgetgangster.com
– Propeller Platform kits and accessories

Bill of Materials
D1-D12 1N4001 Mouser 512-1N4001
JMPR1 0.1 SHUNT Mouser 517-950-00
Q1-Q12 2N3904 Mouser 610-2N3904
Q13-Q24 TIP125 Mouser 512-TIP125
R1-R12 470 ohm Mouser 299-470-RC
R13-R24 1K ohm Mouser 299-1K-RC
R25 2.2K ohm Mouser 299-2.2K-RC
R26 10K ohm Mouser 299-10K-RC
RN1-RN12 8x10K, SIP Mouser 81-RGLD8X103J
SW1 6mm NO Mouser 653-B3F-1022
TB1-TB13 0.2 Euro Mouser 571-2828362
X1-X8 0.1 M-STRT Mouser 517-6111TG*
PCB ExpressPCB

* The 517-6111TG is a 40-pin component; only two are required for the project (split as needed).

