
Copyright © Nuts&Volts Magazine Spinning Up Fun With Encoders May 2010 Page 1 of 10

Spinning Up Fun With Encoders
By Jon Williams

For Nuts & Volts Magazine, Column 6, May 2010

In my dual life that crosses between the technical and entertainment worlds I have the incredible good
fortune to meet some really great people. Case in point: I was contacted by cool cat named Wayne
(dubbed “the Brain” by his friends) who, like me, is an electronics enthusiast and embedded programmer,
and who also works in “show biz.” Wayne’s entertainment gig is in music, engineering and mixing songs
for some amazing A-List Pop, R&B, and Hip-Hop artists. Wayne needed help a little with an encoder for
a personal project. Coincidentally, one of my own customers had asked about adding a local user
interface to a product. While working with Wayne, I solved my own problem and I’m going to show you
what I came up with so you can put it to use, too. And while we’re on the topic of expanding inputs with
just a few IO pins I’m also going to show you how to apply an old trick to this new processor.

Gray Code is Black & White
The encoder Wayne selected is called a Gray code encoder; in his particular case it is a two-bit encoder.
Gray code is different from regular binary code in that two successive values differ by only one bit – like
this for the two-bit encoder we’ll be using:

%11 → %01 → %00 → %10 → %11

Note that as we move through the sequence, in either direction, only one bit changes. And yes, this is in
fact different from a two-bit binary sequence where we would go from %11 to %00 and two bits would
change. Why is all this so important? Well, despite best efforts in manufacturing, having two bits change
at precisely the same time is darned near impossible, and a processor as fast as the Propeller could
easily catch one changing before the other, resulting in a bad input; Gray code solves this with the single
bit change between steps.

Dealing with a Gray code encoder is quite simple: scan the inputs, check for a change, and on a change
determine direction. Adding to the mix, Wayne’s encoder – and the one I went with for my own project
board – has a push-button and detents, that is, it “clicks” when you turn the shaft. The button is no
problem, we know how to debounce buttons and we can add that to the object code. The detents create
an extra bit of work but once we understand how the encoder behaves you’ll see it’s also pretty simple.

Figure 1 shows the output of the encoder using normally-open pins that are pulled up to Vdd – this comes
right out of the data sheet so I matched it (see Figure 2 for the schematic). Note the location of the
detents (when both outputs are off) – we’ll adjust the object for this so that one piece of code will work
with “detented” encoders as well as those that freely spin and can stop at any output pattern.

Copyright © Nuts&Volts Magazine Spinning Up Fun With Encoders May 2010 Page 2 of 10

Figure 1

Figure 2

Let’s jump in. My main goal with this object was to be able to initialize it, and then ask for the position
value and button status – everything else is handled behind-the-scenes in the encoder cog. To keep
things really flexible we’ll allow the ability to reset the current position value, and this will be validated (and
corrected if necessary) by the object.

Here’s the method we’ll call to initialize the encoder object:

pub init(base, btn, detent, lo, hi, preset)

 finalize

 enctiming := (clkfreq / 1_000) >> 2
 basepin := base
 btnmask := |< btn

 if detent
 hasdetent := true
 lolimit := lo << 2
 hilimit := hi << 2
 encoder := preset << 2
 else
 hasdetent := false
 lolimit := lo
 hilimit := hi
 encoder := preset

Copyright © Nuts&Volts Magazine Spinning Up Fun With Encoders May 2010 Page 3 of 10

 cog := cognew(@grayenc, @encoder) + 1

 return cog

The first parameter is the base pin, which is the A pin of the encoder. To keep the code simple we expect
the next higher pin will be the encoder’s B pin. The second parameter is the encoder’s button input. Note
that all three pins are active low, that is, they are pulled-up to Vdd through 10K and will go low when
active.

Next up is the true (non-zero) or false (zero) value that specifies whether the encoder has detents or not.
Finally, we’ll pass the low, high, and initial (preset) values for the driver. If, for example, we had an
encoder with a base pin of 3, switch pin of 5, is “detented,” will span from -100 to +100, and starts at zero,
we would initialize it like this:

 encoder.init(3, 5, true, -100, 100, 0)

When a detented encoder is used the limits and preset values are shifted left by two, which is the same
as multiplying by four. We have to do this to account for the steps in between each detent. And, no,
shifting negative values left, for the range we would typically use, is not a problem. I tested this theory on
values down to minus ten million – a value we’d never use in an actual project – just to make sure.

The range limits take priority over the preset value; if the preset is outside the specified range the object
will fix it; let’s have a look at that.

grayenc rdlong tmp1, par
 mins tmp1, lolimit
 maxs tmp1, hilimit
 wrlong tmp1, par

At par is the address of the encoder value. After reading the preset value into tmp1 we use signed
versions of min and max to ensure that it is within the stated bounds. Yes, we could have done this in
Spin in the init() method, but it’s easy and fast so it just seemed like this was the best place to handle
it.

Next up is basic initialization of the button debounce workspace, the previous scan result (stored in
oldscan), and creating a timer. We don’t need the timer for the encoder, but it does come into play for
debouncing the button input.

setup mov btnwork, #0
 mov tmp1, par
 add tmp1, #4
 wrlong btnwork, tmp1

 mov oldscan, ina
 shr oldscan, basepin
 and oldscan, #%11

 mov timer, cnt
 add timer, enctiming

And now we get to the guts of it.

encloop waitcnt timer, enctiming

scan mov newscan, ina

Copyright © Nuts&Volts Magazine Spinning Up Fun With Encoders May 2010 Page 4 of 10

 mov tmp1, newscan

chkbutton test btnmask, tmp1 wc
 if_c mov btnwork, #0
 if_nc add btnwork, #1
 max btnwork, BTN_TM wc
 if_c mov tmp1, #0
 if_nc mov tmp1, IS_PRESSED
 mov tmp2, par
 add tmp2, #4
 wrlong tmp1, tmp2

As ever, delays are a breeze in PASM with the waitcnt instruction. I’ve set the encoder to run on a 250
microsecond loop, that way if we get really zippy with the encoder knob the program can still keep up.

The present state of the input pins are copied into newscan and that is copied into tmp1 where we’ll use it
to check on the button. To check the button input we AND (using test) the button mask with tmp1 and
save the result in the Carry flag. We’re using an active-low circuit, so a set Carry flag means that the
button is not pressed. If that’s the case the value of btnwork is cleared, otherwise it’s incremented.

The next step, using max, actually does two things for us: 1) it keeps the value of btnwork at the
debounce timing limit to prevent a roll-over on a stuck switch, and 2) the Carry flag indicates whether
btnwork is less than BTN_TM (set for 25 ms). If the Carry flag is set the button is not fully debounced and
we move zero to tmp1, otherwise we move IS_PRESSED (true) to tmp1, then write it to the hub at the
address for the button status. Again, the encoder value address is stored in par, so four (for a long value)
is added to this value to get the correct address of the button status variable.

With the button debounced (or not) we can check to see if the encoder moved. Well start by isolating the
encoder inputs and comparing them to the last scan.

chkencoder shr newscan, basepin
 and newscan, #%11
 cmp newscan, oldscan wz
 if_e jmp #encloop

Now you can see why we want the A and B pins in contiguous, ascending order on the inputs; we’re
simply shifting the scan value right by the base (A) pin number and masking off the other bits. This is
compared to oldscan and if they’re equal (i.e., no change) we jump right back to the top.

Okay, I know there’s more than one of you hardcore types that might want to go willy-nilly on input
mapping; maybe a PCB routing problem prevents keeping the pins contiguous and in ascending order.
Here’s what to do: Create pin masks for the A and B pins (just like we did for the button input) and then
change the code like this:

chkencoder mov tmp1, #0
 test amask, newscan wc
 muxc tmp1, #%01
 test bmask, newscan wc
 muxc tmp1, #%10
 mov newscan, tmp1
 cmp newscan, oldscan wz
 if_e jmp #encloop

As you can see, this version tests each input and moves them, through the Carry flag, into the correct
locations in newscan. I really like the muxc operator; this code snippet shows how useful it is, allowing us
to move what’s in C to any bit position of a variable. Remember, if you update the PASM code to handle
non-contiguous encoder pins you’ll need update the initialization of oldscan and add a B pin parameter to

Copyright © Nuts&Volts Magazine Spinning Up Fun With Encoders May 2010 Page 5 of 10

the init() method. Actually, I’ve done the work for you (see jm_grayenc2btnx.spin; this version allows
us to disable the button pin as well).

Okay, let’s say we have a change. What I use is an assembly version of a case structure, using the
previous scan and comparing it to the value for a positive (clockwise) change.

case11 cmp oldscan, #%11 wz
 if_ne jmp #case01
 cmp newscan, #%01 wz
 jmp #update

case01 cmp oldscan, #%01 wz
 if_ne jmp #case00
 cmp newscan, #%00 wz
 jmp #update

case00 cmp oldscan, #%00 wz
 if_ne jmp #case10
 cmp newscan, #%10 wz
 jmp #update

case10 cmp oldscan, #%10 wz
 if_ne jmp #encloop
 cmp newscan, #%11 wz

You’ll see that each section is identically constructed. If the new scan represents a clockwise move the Z
flag will be set, otherwise the Z flag will be cleared. The program then jumps to update which does the
final routing.

update rdlong tmp2, par
 if_nz jmp #decvalue

incvalue adds tmp2, #1
 maxs tmp2, hilimit
 wrlong tmp2, par
 mov oldscan, newscan
 jmp #encloop

decvalue subs tmp2, #1
 mins tmp2, lolimit
 wrlong tmp2, par
 mov oldscan, newscan
 jmp #encloop

At update we retrieve the encoder value from the hub (because it could have been changed by the top-
level program) and then increment or decrement it (based on the state of the Z flag), using the previously-
defined limits. The updated value is written back to the hub and we’re done.

Well, almost – we need a method to read the current encoder value in our top-level program.

pub read

 if hasdetent
 return (encoder ~> 2)
 else
 return encoder

Remember that situation with the detented encoders and the 4x multiplier? We multiplied the limits and
preset value by four to accommodate the changes between clicks. Well, if we’re using a detented

Copyright © Nuts&Volts Magazine Spinning Up Fun With Encoders May 2010 Page 6 of 10

encoder we can’t simply shift the value right to return it to the intended range; doing this on a negative
number would cause it to go positive (because a 0 would be shifted into bit 31, the sign bit). No worries,
Spin has a really cool operator call Shift Arithmetic Right (~>). This operator does a right shift while
maintaining the sign of the value, allowing the use positive and negative numbers with no muss or fuss.

More Easy Input Expansion
The product I mentioned in the opening is a 16-channel DMX controller that my business partner, [former
Parallax engineer] John Barrowman, and I designed. As control of the outputs is paramount we use
P0..P15 for the output channels. With the RS-485 circuitry, a two-position mode switch, and other IO
requirements, we just didn’t have enough pins on the Propeller to accommodate the nine-bit DMX
address (like I did in my small DMX project last November).

The solution? Dirt easy: use a 74x165 input shift register. With three pins we get eight inputs; for the
DMX address we simply connected bit 8 of the address switch directly to the Propeller. For my Propeller
Platform add-on, I used an 8-bit switch and a 2x8 header (to allow off-board switches); see Figure 3 for
the schematic.

Figure 3

If you’ve used the 74x165 with PBASIC or SX/B you probably used SHIFTIN to read it. We can’t do that
with the Propeller, directly, anyway, as there is no built-in SHIFTIN instruction. You might be wondering
why. For all its power, the Propeller has to squeeze the Spin interpreter into a single cog and that’s tough
work, so some niceties from PBASIC are not included.

No problem! – we’ll just write our own method, and no assembly (PASM) is required. The code the
follows is very similar to PBASIC’s SHIFTIN, reading a single byte in MSBFIRST mode, though it is setup
to accommodate the Shift/Load line of the 74x165.

pub in165(ld, do, clk) | tmp165

 outa[ld]~~
 dira[ld]~~
 outa[clk]~

Copyright © Nuts&Volts Magazine Spinning Up Fun With Encoders May 2010 Page 7 of 10

 dira[clk]~~
 dira[do]~

 outa[ld]~
 outa[ld]~~

 tmp165~
 repeat 8
 tmp165 := (tmp165 << 1) | ina[do]
 outa[clk]~~
 outa[clk]~

 return tmp165

As with PBASIC and SX/B SHIFTIN, this method takes care of setting the IO pins used to the required
states. We start by making the Shift/Load pin an output and high, the Clock pin an output and low, and
the Data Out (from the x165) an input.

The Shift/Load line is blipped low, then back high; this latches the present state of the eight inputs to an
internal register. With the data latched it can be shifted into the Propeller using a repeat loop.

The first line of the repeat loop does all the hard work; it preps the work value by shifting it left one bit
and then OR’ing the state of the DO pin to the value (in bit 0). After the bit is moved into the work
variable the Clock line is blipped high then back low to get the next bit.

One of the things that Spin does not have is dot notation for bits like we’ve used in PBASIC and SX/B.
For example, what if we wanted to convert the routine above to shift the bits in LSB first? Here’s the
change that makes that happen:

 repeat 8
 tmp165 := (tmp165 >> 1) | (ina[do] << 7)

In this case we shift the work variable one bit right and then OR the DO value into bit 7. Note that we had
to shift the DO bit before the OR operation. There’s one more trick we could use, the reverse (><)
operator. For example, we could create a global constant called LSBFIRST that would be applied after
the value is shifted in – like this:

 repeat 8
 tmp165 := (tmp165 << 1) | ina[do]
 outa[clk]~~
 outa[clk]~

 if LSBFIRST
 tmp165 ><= 8

While I haven’t personally needed to use more than one 74x165 with a Propeller project, it’s certainly a
possibility. Here, then, is a final version of the routine that accommodates the number of bits to shift as
well as the shift mode. With this version of the routine we could read up to four, daisy-chained ‘165s into
a single, 32-bit long.

pub in165x(ld, do, clk, bits, mode) | tmp165

 outa[ld]~~
 dira[ld]~~
 outa[clk]~~
 dira[clk]~~
 dira[do]~

 outa[ld]~

Copyright © Nuts&Volts Magazine Spinning Up Fun With Encoders May 2010 Page 8 of 10

 outa[ld]~~

 tmp165~
 bits <#= 32
 repeat bits
 tmp165 := (tmp165 << 1) | ina[do]
 outa[clk]~~
 outa[clk]~

 if (mode == LSBFIRST)
 tmp165 ><= bits

 return tmp165

The changes should be apparent: We’ll limit the bit count to 32 for obvious reasons, update the repeat
loop to use the bits parameter, then use the mode parameter with bits to adjust if LSBFIRST (mode = 0)
is desired.

Since I’ve already made use of the 74x165 in two Propeller designs and I anticipate using Gray code
encoders in a couple more, I created a little prototyping add-on for the Propeller Platform that includes the
‘165 and two encoders. These components don’t take much space so I filled the rest with pads to place
other components. Figure 4 show the board attached to my original Propeller Platform. Figure 5 shows
the output of a simple demo using the Parallax Serial Terminal through the programming connection.

Figure 4

Copyright © Nuts&Volts Magazine Spinning Up Fun With Encoders May 2010 Page 9 of 10

Figure 5

PropBASIC Follow-Up

Wow, the response to PropBASIC was really amazing. To be honest, I was a little surprised, but then I
really shouldn’t be, should I? Those of us with Parallax experience have a lot of time with BASIC and this
new tool made moving to the Propeller easier for some PBASIC and SX/B users.

Of course things got even better when Brad Campbell, an Australian Propeller programmer (and very nice
guy), integrated the PropBASIC compiler into his BST (Brad’s Spin Tool) IDE. What does this mean?
Well, if you looked past the Propeller to something like, say, the Arduino because of the availability of a
cross-platform development tool, well... time to drop the single-core processor and move on up to the
multi-core Propeller. With BST you can program the Propeller in Spin, PASM, or PropBASIC, on nearly
any Windows, Mac, or Linux PC. Now, that’s cool!

The easiest way to get the BST IDE and PropBASIC compiler files you need is through links at
www.propbasic.com.

Before I close let me correct a small error in my last column. When an IDE like the Propeller Tool or BST
is downloading to the Propeller it is the Propeller – not the IDE as I misstated – that makes the
adjustment for baud rate. This makes better sense; typically the receiver does the “auto baud” detection
and configuration. I apologize for any confusion.

Okay, then; until next time – on a PC, a Mac, or Linux box – have fun and keep spinning and winning with
the Propeller.

Copyright © Nuts&Volts Magazine Spinning Up Fun With Encoders May 2010 Page 10 of 10

Resources

Jon “JonnyMac” Williams
jwilliams@efx-tek.com

Parallax, Inc.
www.parallax.com

PropBASIC
www.propbasic.com

Bill of Materials

C1 0.1uF Mouser 80-C315C104M5U
ENC1, ENC2 Encoder Mouser 858-EN11-HSB1AF20
HDR1, X1-X4 0.1 male Mouser 517-6111TG
RN1, RN2 8x10K Mouser 81-RGLD8X103J
SW1 DIPx8 Mouser 611-BD08
U1 74HC165 Mouser 595-CD74HC165E

PCB ExpressPCB

